Home
Class 11
MATHS
Given xgt 0, then value of f(x)=-3cossqr...

Given x`gt` 0, then value of `f(x)=-3cossqrt(3+x+x^(2))` lie in the interval ….. .

Text Solution

AI Generated Solution

To find the interval in which the function \( f(x) = -3 \cos(\sqrt{3 + x + x^2}) \) lies for \( x > 0 \), we can follow these steps: ### Step 1: Define the function We start with the function: \[ f(x) = -3 \cos(\sqrt{3 + x + x^2}) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

The value of f(x)=3sinsqrt(((pi^2)/(16)-x^2)) lie in the interval____

The values of x satisfying x^("log"_(5)) gt5 lie in the interval

For 0ltxlt(pi)/(6), all the values of tan^(2)3x cos^(2)x-4tan3xsin2x+16sin^(2)x lie in the interval

If x is real then the values of (x^(2) + 34 x - 71)/(x^(2) + 2x - 7) does not lie in the interval

Verify Rolle's theorem for the following functions in the given intervals. (i) f(x) = (x-2) (x-3)^(2) in the interval [2,3] . (ii) f(x) = x^(3) (x-1)^(2) in the interval [0,1].

Verify Lagrange's Mean Value theorem for the following functions in the given intervals f(x) = 1 + 2x -x^(2) in the interval [0,1] .

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

If 3x^(2)+4kx+1 gt 0 for all real values of x, then k lies in the interval

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Verify Lagrange's Mean Value theorem for the following functions in the given intervals f(x) = x^(2) + x -2 in the interval [0,4] .