Home
Class 11
MATHS
For a positive integer n , find the valu...

For a positive integer `n` , find the value of (`1-i)^n(1-1/i)^ndot`

Text Solution

Verified by Experts

Given expression = `(1-i)^(n)(1-(1)/(i))^(n)`
`=(1 -i)^(n)(i-1)^(n).i^(-n)= (1-i)^(n)(-1)^(n). i^(-n)`
`=[(1 -i)^(2)]^(n)(-1)^(n).i^(-n)= (1-i^(2)-2i)^(n)(-n)^(n) i^(-n)" "[:.i^(2)=-1]`
`=(1-1-2i)^(n)i^(-n)=(-2)^(n). i^(n)(-1)^(n)i^(-n) `
`= (-1)^(2n).2^(n) = 2^(n)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

Find the smallest positive integer value of n for which ((1+i)^n)/((1-i)^(n-2)) is a real number.

If n is a positive integer, find the coefficient of x^(-1) in the expansion of (1+x)^n(1+1/x)^ndot

If 4^(x)*n^(2)=4^(x+1)*n and x and n are both positive integers, what is the value of n?

What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n)?

What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n) ?

Find the least positive integer n for which ((1+i)/(1-i))^n

If A is a nilpotent matrix of index 2, then for any positive integer n ,A(I+A)^n is equal to (a) A^(-1) (b) A (c) A^n (d) I_n