Home
Class 11
MATHS
Evaluate sum(n=1)^(13)(i^n+i^(n+1)), whe...

Evaluate `sum_(n=1)^(13)(i^n+i^(n+1)),` where `n in Ndot`

Text Solution

AI Generated Solution

To evaluate the expression \( \sum_{n=1}^{13} (i^n + i^{n+1}) \), we can follow these steps: ### Step 1: Rewrite the Summation We can rewrite the expression inside the summation: \[ i^n + i^{n+1} = i^n + i \cdot i^n = (1 + i) i^n \] Thus, the summation becomes: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

Evaluate S=sum_(n=0)^n(2^n)/((a^(2^n)+1) (where a>1) .

Evaluate: lim_(n->oo)sin^n((2pin)/(3n+1)),n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

The value of sum Σ13n=1(in+in+1) where i=−1−−−√ equals