Home
Class 11
MATHS
If ((1 +i)/(1 -i))^(x) =1, then (A) x=2n...

If `((1 +i)/(1 -i))^(x) =1`, then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n` in`N.

A

`x = 2n + 1`

B

`x = 4n`

C

`x = 2n`

D

`x = 4n + 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left(\frac{1 + i}{1 - i}\right)^{x} = 1\), we will follow these steps: ### Step 1: Simplify the expression \(\frac{1 + i}{1 - i}\) We can simplify this expression by multiplying the numerator and the denominator by the conjugate of the denominator, which is \(1 + i\): \[ \frac{1 + i}{1 - i} \cdot \frac{1 + i}{1 + i} = \frac{(1 + i)(1 + i)}{(1 - i)(1 + i)} \] ### Step 2: Calculate the numerator and denominator Calculating the numerator: \[ (1 + i)(1 + i) = 1^2 + 2i + i^2 = 1 + 2i - 1 = 2i \] Calculating the denominator: \[ (1 - i)(1 + i) = 1^2 - i^2 = 1 - (-1) = 1 + 1 = 2 \] Thus, we have: \[ \frac{1 + i}{1 - i} = \frac{2i}{2} = i \] ### Step 3: Substitute back into the equation Now we substitute back into the original equation: \[ (i)^{x} = 1 \] ### Step 4: Analyze the powers of \(i\) We know that: \[ i^1 = i, \quad i^2 = -1, \quad i^3 = -i, \quad i^4 = 1 \] The powers of \(i\) repeat every 4 terms. Therefore, \(i^x = 1\) when \(x\) is a multiple of 4. This can be expressed as: \[ x = 4n \quad \text{where } n \in \mathbb{N} \] ### Conclusion Thus, the solution to the equation is: \[ \boxed{x = 4n} \]

To solve the equation \(\left(\frac{1 + i}{1 - i}\right)^{x} = 1\), we will follow these steps: ### Step 1: Simplify the expression \(\frac{1 + i}{1 - i}\) We can simplify this expression by multiplying the numerator and the denominator by the conjugate of the denominator, which is \(1 + i\): \[ \frac{1 + i}{1 - i} \cdot \frac{1 + i}{1 + i} = \frac{(1 + i)(1 + i)}{(1 - i)(1 + i)} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If ((1+i)/(1-i))^(x)=1 AA n in N is (i) x = 2n+1 (ii) x =4n (iii) x=2n (iv) x=4n+1

If f(x) = (a-x^n)^(1/n) then fof(x) is (A) x (B) a-x (C) x^2 (D) -1/x^n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If cos^2x+cos^2 2x+cos^2 3x=1 then (a) x=(2n+1)pi/4,\ n in I (b) x=(2n+1)pi/2,\ n in I (c) x=npi+-\ pi/6,\ n in I (d) none of these

Let f(x) = (x^2 - 1)^(n+1) * (x^2 + x + 1) . Then f(x) has local extremum at x = 1 , when n is (A) n = 2 (B) n = 4 (C) n = 3 (D) n = 5

If A={x : x=n , n in N} , B={x : =2n , n in N} , c={x : x =4n , n in N} , then

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (x + a_(1)) (x + a_(2)) (x + a_(3)) …(x + a_(n)) = x^(n) + S_(1) x^(n-1) + S_(2) x^(n-2) + …+ S_(n) where , S_(1) = sum_(i=0)^(n) a_(i), S_(2) = (sumsum)_(1lei lt j le n) a_(i) a_(j) , S_(3) (sumsumsum)_(1le i ltk le n) a_(i) a_(j) a_(k) and so on . If (1 + x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n) x^(n) the cefficient of x^(n) in the expansion of (x + C_(0))(x + C_(1)) (x + C_(2))...(x + C_(n)) is

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + c_(3) x^(3) + …+ C_(n) x^(n) , show that sum_(r=0)^(n) (C_(r) 3^(r+4))/((r+1)(r+2)(r+3)(r+4)) = (1)/((n+1)(n+2)(n+3)(n+4))(4^(n+4) -sum_(t=0)^(3) ""^(n+4)C_(t)) .