Home
Class 11
MATHS
A real value of x satisfies the equation...

A real value of x satisfies the equation `(3-4ix)/(3+4ix)=alpha-ibeta(alpha,beta in R)`, if `alpha^2+beta^2=`

A

` x = 2n +1`

B

`x = 4n`

C

`x = 2n`

D

`x = 4n + 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3 - 4ix}{3 + 4ix} = \alpha - i\beta\) where \(\alpha, \beta \in \mathbb{R}\), we will follow these steps: ### Step 1: Substitute a Real Value for \(x\) Let's choose \(x = 1\) for simplicity. Thus, we rewrite the equation as: \[ \frac{3 - 4i}{3 + 4i} = \alpha - i\beta \] ### Step 2: Multiply by the Conjugate of the Denominator To simplify the left-hand side, we multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(3 - 4i)(3 - 4i)}{(3 + 4i)(3 - 4i)} \] ### Step 3: Expand the Numerator and Denominator Calculating the numerator: \[ (3 - 4i)(3 - 4i) = 3^2 - 2 \cdot 3 \cdot 4i + (4i)^2 = 9 - 24i - 16 = -7 - 24i \] Calculating the denominator: \[ (3 + 4i)(3 - 4i) = 3^2 - (4i)^2 = 9 + 16 = 25 \] ### Step 4: Write the Expression Now, we can rewrite the equation: \[ \frac{-7 - 24i}{25} = \alpha - i\beta \] This simplifies to: \[ -\frac{7}{25} - i\frac{24}{25} = \alpha - i\beta \] ### Step 5: Compare Real and Imaginary Parts From the equation, we can identify: \[ \alpha = -\frac{7}{25}, \quad \beta = \frac{24}{25} \] ### Step 6: Calculate \(\alpha^2 + \beta^2\) Now, we need to find \(\alpha^2 + \beta^2\): \[ \alpha^2 = \left(-\frac{7}{25}\right)^2 = \frac{49}{625} \] \[ \beta^2 = \left(\frac{24}{25}\right)^2 = \frac{576}{625} \] Thus, \[ \alpha^2 + \beta^2 = \frac{49}{625} + \frac{576}{625} = \frac{625}{625} = 1 \] ### Final Answer The value of \(\alpha^2 + \beta^2\) is: \[ \boxed{1} \]

To solve the equation \(\frac{3 - 4ix}{3 + 4ix} = \alpha - i\beta\) where \(\alpha, \beta \in \mathbb{R}\), we will follow these steps: ### Step 1: Substitute a Real Value for \(x\) Let's choose \(x = 1\) for simplicity. Thus, we rewrite the equation as: \[ \frac{3 - 4i}{3 + 4i} = \alpha - i\beta \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

A real value of of x satisfies the equation (3-4ix)/(3+4ix)= alpha-ibeta(alpha,beta in R) if alpha^(2)+beta^(2)) =

Let alpha satisfy the equation x ^(3) +3x ^(2) +4x+5=0 and beta satisfy the equatin x ^(3) -3x ^(2)+4x-5=0,alpha, beta in R, then alpha + beta =

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

Given alpha and beta are the roots of the quadratic equation x^(2)-4x+k=0(kne0). If alpha beta, alpha beta^(2)+alpha^(2)beta and alpha^(3)+beta^(3) are in geometric progression, then the value of k is equal to

If alpha and beta are the roots of the equation x^(2)+x+c=0 such that alpha+beta, alpha^(2)+beta^(2) and alpha^(3)+beta^(3) are in arithmetic progression, then c is equal to

Let alpha,beta be two real numbers satisfying the following relations alpha^2+beta^2=5, 3(alpha^5+beta^5)=11(alpha^3+beta^3)1. Possible value of alpha beta is

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to