Home
Class 11
MATHS
The complex number w...

The complex number which satisfies the condition `|(i+z)/(i-z)|=1\ ` lies on a. `c i r c l e\ x^2+y^2=1` b. `t h e\ x-a xi s` c. `t h e\ y-a xi s` d. `t h e\ l in e\ x+y=1`

A

Circle `x^(2) + y^(2) = 1`

B

the X-axis

C

the Y-axis

D

the line `x + y = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the condition given for the complex number \( z \) such that \[ \left| \frac{i + z}{i - z} \right| = 1. \] ### Step 1: Represent the complex number \( z \) Let \( z = a + ib \), where \( a \) and \( b \) are real numbers. ### Step 2: Substitute \( z \) into the expression Substituting \( z \) into the expression gives: \[ \left| \frac{i + (a + ib)}{i - (a + ib)} \right| = \left| \frac{(a + (1 + b)i)}{(-a + (1 - b)i)} \right|. \] ### Step 3: Simplify the expression This can be rewritten as: \[ \left| \frac{a + (1 + b)i}{-a + (1 - b)i} \right| = 1. \] ### Step 4: Cross-multiply the modulus Using the property of modulus, we can cross-multiply: \[ |a + (1 + b)i| = |-a + (1 - b)i|. \] ### Step 5: Calculate the moduli Calculating the moduli gives: \[ \sqrt{a^2 + (1 + b)^2} = \sqrt{(-a)^2 + (1 - b)^2}. \] ### Step 6: Square both sides Squaring both sides results in: \[ a^2 + (1 + b)^2 = a^2 + (1 - b)^2. \] ### Step 7: Simplify the equation Cancelling \( a^2 \) from both sides gives: \[ (1 + b)^2 = (1 - b)^2. \] ### Step 8: Expand both sides Expanding both sides results in: \[ 1 + 2b + b^2 = 1 - 2b + b^2. \] ### Step 9: Cancel \( b^2 \) and simplify Cancelling \( b^2 \) from both sides gives: \[ 1 + 2b = 1 - 2b. \] ### Step 10: Solve for \( b \) Rearranging gives: \[ 2b + 2b = 0 \implies 4b = 0 \implies b = 0. \] ### Conclusion Since \( b = 0 \), this means that the complex number \( z \) lies on the x-axis, where \( z = a + 0i \). Thus, the answer is: **b. the x-axis.**

To solve the problem, we need to analyze the condition given for the complex number \( z \) such that \[ \left| \frac{i + z}{i - z} \right| = 1. \] ### Step 1: Represent the complex number \( z \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

The complex number which satisfies the condition |(i+z)/(i-z)|=1\ lies on a. circle \x^2+y^2=1 b. the x-axis c. the y-axis d. the line x+y=1

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre (-1,0) and radius 1 (c)y-axis (d) none of these

The solution of the differential equation 2x(dy)/(dx)-y=3 represents (a) c i r c l e s b.straight lines c. e l l i p s e s d. p a r a bol a s

Let (x , y) be such that sin^(-1)(a x)+cos^(-1)(y)+cos^(-1)(b x y)=pi/2dot Match the statements in column I with statements in column II Ifa=1a n db=0,t h e n(x , y) , (p) lies on the circle x^2+y^2=1 Ifa=1a n db=1,t h e n(x , y) , (q) l i e son(x^2-1)(y^2-1)=0 Ifa=1a n db=2,t h e n(x , y) , (r) lies on y=x Ifa=2a n db=2,t h e n(x , y) , (s) lies on (4x^2-1)(y^2-1)=0

If [1 4 2 0]=[x y^2z0],y<0t h e nx-y+z=

Using integration, find the area of the region bounded by the line y-1=x ,t h e x-a xi s and the ordinates x=-2 and x=3.

If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical about the y-a xi s ,t h e nn equals 2 (b) 2/3 (c) 1/4 (d) 1/3

If x=5a n dy=-2t h e nx-2y=9. The contrapositive of this statement is A.If x-2y=9t h e nx=5a n dy=-2 B. If x-2y!=9t h e nx!=5a n dy!=-2 C. If x-2y!=9t h e nx!=5ory!=-2 D. If x-2y!=9t h e ne i t h e rx!=5a n dy!=-2

Let s ,\ t ,\ r be non-zero complex numbers and L be the set of solutions z=x+i y\ \ (x ,\ y in RR,\ \ i=sqrt(-1)) of the equation s z+t z +r=0 , where z =x-i y . Then, which of the following statement(s) is (are) TRUE? If L has exactly one element, then |s|!=|t| (b) If |s|=|t| , then L has infinitely many elements (c) The number of elements in Lnn{z :|z-1+i|=5} is at most 2 (d) If L has more than one element, then L has infinitely many elements

If x=e^y+e^((y+ tooo)) , where x >0,t h e n (dy)/(dx)