Home
Class 11
MATHS
The real value of theta for which the ex...

The real value of `theta` for which the expression `(1 + icos theta)/(1 - 2i cos theta)` is real number is

A

`npi+(pi)/(4)`

B

`npi+(-1)^(2)(pi)/(4)`

C

`2npipm(pi)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the real value of \(\theta\) for which the expression \[ \frac{1 + i \cos \theta}{1 - 2i \cos \theta} \] is a real number, we will follow these steps: ### Step 1: Rationalize the Denominator We will multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 + 2i \cos \theta\): \[ \frac{(1 + i \cos \theta)(1 + 2i \cos \theta)}{(1 - 2i \cos \theta)(1 + 2i \cos \theta)} \] ### Step 2: Simplify the Denominator Using the difference of squares formula, we can simplify the denominator: \[ (1 - 2i \cos \theta)(1 + 2i \cos \theta) = 1^2 - (2i \cos \theta)^2 = 1 - 4(-1)(\cos^2 \theta) = 1 + 4 \cos^2 \theta \] ### Step 3: Simplify the Numerator Now, we simplify the numerator: \[ (1 + i \cos \theta)(1 + 2i \cos \theta) = 1 + 2i \cos \theta + i \cos \theta + 2i^2 \cos^2 \theta = 1 + 3i \cos \theta - 2 \cos^2 \theta \] ### Step 4: Combine the Results Now we can write the expression as: \[ \frac{1 - 2 \cos^2 \theta + 3i \cos \theta}{1 + 4 \cos^2 \theta} \] ### Step 5: Separate Real and Imaginary Parts This expression can be separated into real and imaginary parts: Real part: \(\frac{1 - 2 \cos^2 \theta}{1 + 4 \cos^2 \theta}\) Imaginary part: \(\frac{3 \cos \theta}{1 + 4 \cos^2 \theta}\) ### Step 6: Set the Imaginary Part to Zero For the entire expression to be real, the imaginary part must equal zero: \[ \frac{3 \cos \theta}{1 + 4 \cos^2 \theta} = 0 \] ### Step 7: Solve for \(\cos \theta\) The fraction equals zero when the numerator is zero: \[ 3 \cos \theta = 0 \implies \cos \theta = 0 \] ### Step 8: Find Values of \(\theta\) The cosine function equals zero at: \[ \theta = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] This gives us the general solution: \[ \theta = 2n\pi + \frac{\pi}{2} \quad \text{or} \quad \theta = 2n\pi - \frac{\pi}{2} \] ### Final Answer Thus, the real values of \(\theta\) for which the expression is a real number are: \[ \theta = n\pi + \frac{\pi}{2} \quad (n \in \mathbb{Z}) \]

To find the real value of \(\theta\) for which the expression \[ \frac{1 + i \cos \theta}{1 - 2i \cos \theta} \] is a real number, we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

The real vaule of theta for which the expression (1+icostheta)/(1-2icos theta) is a purely imaginary number is

Find the real values of theta for which the complex number (1+i costheta)/(1-2i costheta) is purely real.

Find real value of theta for which (3+2i sin theta)/(1-2i sin theta) is purely real.

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

Express 1/(1+cos theta-i sin theta) in the form of a +ib .

Find the maximum and minimum values of the following expressions (i) a cos theta - bsin theta (ii) 7 cos theta + 24 sin theta

Find the theta such that (3+2i sin theta)/(1-2 isin theta) is (a) real

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)