Home
Class 11
MATHS
If f(z)=(7-z)/(1-z^2) , where z=1+2i , t...

If `f(z)=(7-z)/(1-z^2)` , where `z=1+2i ,` then `|f(z)|` is

A

`(|z|)/(2)`

B

`|z|`

C

`2|z|`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus of the function \( f(z) = \frac{7 - z}{1 - z^2} \) where \( z = 1 + 2i \), we will follow these steps: ### Step 1: Calculate \( z^2 \) First, we need to compute \( z^2 \): \[ z = 1 + 2i \] \[ z^2 = (1 + 2i)^2 = 1^2 + 2 \cdot 1 \cdot 2i + (2i)^2 = 1 + 4i - 4 = -3 + 4i \] ### Step 2: Substitute \( z \) and \( z^2 \) into \( f(z) \) Now substitute \( z \) and \( z^2 \) into the function: \[ f(z) = \frac{7 - (1 + 2i)}{1 - (-3 + 4i)} \] \[ = \frac{7 - 1 - 2i}{1 + 3 - 4i} = \frac{6 - 2i}{4 - 4i} \] ### Step 3: Simplify \( f(z) \) Next, we simplify \( f(z) \): \[ f(z) = \frac{6 - 2i}{4 - 4i} \] To simplify, we can multiply the numerator and denominator by the conjugate of the denominator: \[ f(z) = \frac{(6 - 2i)(4 + 4i)}{(4 - 4i)(4 + 4i)} \] ### Step 4: Calculate the denominator Calculate the denominator: \[ (4 - 4i)(4 + 4i) = 4^2 - (4i)^2 = 16 - (-16) = 32 \] ### Step 5: Calculate the numerator Now calculate the numerator: \[ (6 - 2i)(4 + 4i) = 24 + 24i - 8i - 8i^2 = 24 + 16i + 8 = 32 + 16i \] ### Step 6: Combine results Now we can combine the results: \[ f(z) = \frac{32 + 16i}{32} = 1 + \frac{1}{2}i \] ### Step 7: Find the modulus of \( f(z) \) Now we need to find the modulus of \( f(z) \): \[ |f(z)| = \sqrt{\left(1\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{1 + \frac{1}{4}} = \sqrt{\frac{4}{4} + \frac{1}{4}} = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2} \] ### Final Answer Thus, the modulus \( |f(z)| \) is: \[ |f(z)| = \frac{\sqrt{5}}{2} \]

To find the modulus of the function \( f(z) = \frac{7 - z}{1 - z^2} \) where \( z = 1 + 2i \), we will follow these steps: ### Step 1: Calculate \( z^2 \) First, we need to compute \( z^2 \): \[ z = 1 + 2i \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If z=(1+7i)/((2-i)^2) , then find |z|?

If int(x^2-2)/((x^4+5x^2+4)tan^-1((x^2+2)/x))dx=log|f(z)|+c , then (A) f(z)=tan^-1z , where z=sqrt(x+2) (B) f(z)=tan^-1z , where z=x+2/x (C) f(z)=sin^-1z , where z=(x+2)/x (D) none of these

If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z, is

Complex numbers z satisfy the equaiton |z-(4//z)|=2 Locus of z if |z-z_(1)| = |z-z_(2)| , where z_(1) and z_(2) are complex numbers with the greatest and the least moduli, is

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |(z_(1))/(z_(2))|= (|z_(1)|)/(|z_(2)|)

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

Let f(z) = |(5,3,8),(2,z,1),(1,2,z)| then f(5) is equal to

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)