Home
Class 12
MATHS
If f:R to R is defined by f(x) = x^(2)-3...

If `f:R to R` is defined by `f(x) = x^(2)-3x+2,` write `f{f(x)}`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(f(x)) \) where \( f(x) = x^2 - 3x + 2 \), we will follow these steps: ### Step 1: Identify the function We have the function defined as: \[ f(x) = x^2 - 3x + 2 \] ### Step 2: Substitute \( f(x) \) into itself To find \( f(f(x)) \), we need to substitute \( f(x) \) into the function \( f \): \[ f(f(x)) = f(x^2 - 3x + 2) \] ### Step 3: Replace \( x \) in \( f(x) \) with \( x^2 - 3x + 2 \) Now we will replace \( x \) in the expression for \( f(x) \): \[ f(f(x)) = (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2 \] ### Step 4: Expand \( (x^2 - 3x + 2)^2 \) Using the formula \( (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc \): \[ (x^2 - 3x + 2)^2 = (x^2)^2 + (-3x)^2 + (2)^2 + 2(x^2)(-3x) + 2(-3x)(2) + 2(x^2)(2) \] Calculating each term: - \( (x^2)^2 = x^4 \) - \( (-3x)^2 = 9x^2 \) - \( (2)^2 = 4 \) - \( 2(x^2)(-3x) = -6x^3 \) - \( 2(-3x)(2) = -12x \) - \( 2(x^2)(2) = 4x^2 \) Combining these gives: \[ x^4 - 6x^3 + (9x^2 + 4x^2) + 4 - 12x = x^4 - 6x^3 + 13x^2 - 12x + 4 \] ### Step 5: Substitute back into the equation Now we substitute back into the equation for \( f(f(x)) \): \[ f(f(x)) = (x^4 - 6x^3 + 13x^2 - 12x + 4) - 3(x^2 - 3x + 2) + 2 \] ### Step 6: Expand and simplify Now we expand \( -3(x^2 - 3x + 2) \): \[ -3(x^2 - 3x + 2) = -3x^2 + 9x - 6 \] Now substituting this back: \[ f(f(x)) = x^4 - 6x^3 + 13x^2 - 12x + 4 - 3x^2 + 9x - 6 + 2 \] Combining like terms: \[ f(f(x)) = x^4 - 6x^3 + (13x^2 - 3x^2) + (-12x + 9x) + (4 - 6 + 2) \] This simplifies to: \[ f(f(x)) = x^4 - 6x^3 + 10x^2 - 3x \] ### Final Result Thus, the final expression for \( f(f(x)) \) is: \[ f(f(x)) = x^4 - 6x^3 + 10x^2 - 3x \]

To find \( f(f(x)) \) where \( f(x) = x^2 - 3x + 2 \), we will follow these steps: ### Step 1: Identify the function We have the function defined as: \[ f(x) = x^2 - 3x + 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer Type Questions|12 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|20 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

f:R->R defined by f(x) = x^2+5

If f: R ->R is defined by f(x) = x^2- 3x + 2 , find f(f(x)) .

If f: R->R is defined by f(x)=x^2 , write f^(-1)(25) .

If f: R->R is defined by f(x)=x^2 , write f^(-1)(25) .

If f: R->R is defined by f(x)=10 x-7 , then write f^(-1)(x) .

If f : R to R defined by f ( x) = x^(2) + 1 , then find f^(-1) (-3)

If f: R to R is defined by f(x) = x^(2)+1 , then show that f is not an injection.

If f:R to R is defined by f(x)={{:(,(x-2)/(x^(2)-3x+2),"if "x in R-(1,2)),(,2,"if "x=1),(,1,"if "x=2):} "them " lim_(x to 2) (f(x)-f(2))/(x-2)=

If f:R to R be defined by f(x) = (x)/(sqrt(1 +x^(2) )), then (fofof)(x)= …………. .

If f: R rarr R is defined by f(x)=3x+2,\ define f\ [f(x)]\