Home
Class 12
MATHS
If f:R to R be defined by f(x) = (x)/(...

If `f:R to R ` be defined by `f(x) = (x)/(sqrt(1 +x^(2) )),` then `(fofof)(x)= …………. .`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( (f \circ f \circ f)(x) \) where \( f(x) = \frac{x}{\sqrt{1 + x^2}} \). ### Step 1: Find \( f(f(x)) \) 1. Start with the function: \[ f(x) = \frac{x}{\sqrt{1 + x^2}} \] 2. Now, substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{x}{\sqrt{1 + x^2}}\right) \] 3. Replace \( x \) in \( f(x) \) with \( \frac{x}{\sqrt{1 + x^2}} \): \[ f(f(x)) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\sqrt{1 + \left(\frac{x}{\sqrt{1 + x^2}}\right)^2}} \] 4. Simplifying the denominator: \[ \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 = \frac{x^2}{1 + x^2} \] Therefore, \[ 1 + \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 = 1 + \frac{x^2}{1 + x^2} = \frac{1 + x^2 + x^2}{1 + x^2} = \frac{1 + 2x^2}{1 + x^2} \] 5. So, we have: \[ f(f(x)) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\sqrt{\frac{1 + 2x^2}{1 + x^2}}} = \frac{x}{\sqrt{1 + x^2}} \cdot \frac{\sqrt{1 + x^2}}{\sqrt{1 + 2x^2}} = \frac{x}{\sqrt{1 + 2x^2}} \] ### Step 2: Find \( f(f(f(x))) \) 1. Now, we need to find \( f(f(f(x))) \): \[ f(f(f(x))) = f\left(f(f(x))\right) = f\left(\frac{x}{\sqrt{1 + 2x^2}}\right) \] 2. Substitute \( \frac{x}{\sqrt{1 + 2x^2}} \) into \( f(x) \): \[ f(f(f(x))) = \frac{\frac{x}{\sqrt{1 + 2x^2}}}{\sqrt{1 + \left(\frac{x}{\sqrt{1 + 2x^2}}\right)^2}} \] 3. Simplifying the denominator: \[ \left(\frac{x}{\sqrt{1 + 2x^2}}\right)^2 = \frac{x^2}{1 + 2x^2} \] Therefore, \[ 1 + \left(\frac{x}{\sqrt{1 + 2x^2}}\right)^2 = 1 + \frac{x^2}{1 + 2x^2} = \frac{1 + 2x^2 + x^2}{1 + 2x^2} = \frac{1 + 3x^2}{1 + 2x^2} \] 4. So, we have: \[ f(f(f(x))) = \frac{\frac{x}{\sqrt{1 + 2x^2}}}{\sqrt{\frac{1 + 3x^2}{1 + 2x^2}}} = \frac{x}{\sqrt{1 + 2x^2}} \cdot \frac{\sqrt{1 + 2x^2}}{\sqrt{1 + 3x^2}} = \frac{x}{\sqrt{1 + 3x^2}} \] ### Final Answer Thus, the final result is: \[ (f \circ f \circ f)(x) = \frac{x}{\sqrt{1 + 3x^2}} \]

To solve the problem, we need to find \( (f \circ f \circ f)(x) \) where \( f(x) = \frac{x}{\sqrt{1 + x^2}} \). ### Step 1: Find \( f(f(x)) \) 1. Start with the function: \[ f(x) = \frac{x}{\sqrt{1 + x^2}} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|20 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x/(sqrt(1+x^2) then fofof(x)

If f(x) = x/(sqrt(1+x^2) then fofof(x)

f:R->R defined by f(x) = x^2+5

If f: R to R be defined by f(x) =(1)/(x), AA x in R. Then , f is

If f:R to R is defined by f(x) = x^(2)-3x+2, write f{f(x)} .

If f : R to R defined by f ( x) = x^(2) + 1 , then find f^(-1) (-3)

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

Let f:R->R be a function defined by f(x)=x^2-(x^2)/(1+x^2) . Then:

If f:R rarr R be a function defined as f(x)=(x^(2)-8)/(x^(2)+2) , then f is

If f: R to R defined as f(x)=3x+7 , then find f^(-1)(-2)