Home
Class 12
MATHS
If f(x) = [4-(x-7)^(3)], then f^(-1)(x)=...

If `f(x) = [4-(x-7)^(3)],` then `f^(-1)(x)= ………… .`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = 4 - (x - 7)^3 \), we will follow these steps: ### Step 1: Set \( y = f(x) \) Let \( y = f(x) \): \[ y = 4 - (x - 7)^3 \] ### Step 2: Rearrange the equation to solve for \( x \) We need to express \( x \) in terms of \( y \). Start by isolating the cube term: \[ y - 4 = - (x - 7)^3 \] Multiplying both sides by -1 gives: \[ 4 - y = (x - 7)^3 \] ### Step 3: Take the cube root of both sides Now, take the cube root of both sides: \[ x - 7 = \sqrt[3]{4 - y} \] ### Step 4: Solve for \( x \) Add 7 to both sides to solve for \( x \): \[ x = 7 + \sqrt[3]{4 - y} \] ### Step 5: Replace \( y \) with \( x \) to find \( f^{-1}(x) \) To express the inverse function, replace \( y \) with \( x \): \[ f^{-1}(x) = 7 + \sqrt[3]{4 - x} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = 7 + \sqrt[3]{4 - x} \] ---

To find the inverse of the function \( f(x) = 4 - (x - 7)^3 \), we will follow these steps: ### Step 1: Set \( y = f(x) \) Let \( y = f(x) \): \[ y = 4 - (x - 7)^3 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|20 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

If f(x)= {4 - (x-7)^(3)} , then find f^(-1)(x)=

If f(x)=-4-(x-7)^3 , write f^(-1)(x)dot

If f(x)=-4-(x-7)^3 , write f^(-1)(x)dot

If f(x) = 2^(x) + 1 , then f^(-1)(7) =

If f(x) = 2 x^3 + 7x - 5 then f^(-1) (4) is :

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f(x)=(2x)/(5)+(7)/(3), f^(-1)(x)=

If f(x)=7x^(4)-2x^(3)-8x-5 find f(-1)

If f(x)=x^3-1/(x^3) , show that f(x)+f(1/x)=0.

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))