Home
Class 12
MATHS
Determine the maximum value of Z=11x+7y ...

Determine the maximum value of Z=11x+7y subject to the constraints `2x+y le 6 , x le 2, x ge 0, y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of maximizing \( Z = 11x + 7y \) subject to the constraints \( 2x + y \leq 6 \), \( x \leq 2 \), \( x \geq 0 \), and \( y \geq 0 \), we will follow these steps: ### Step 1: Identify the constraints The constraints given are: 1. \( 2x + y \leq 6 \) 2. \( x \leq 2 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert inequalities to equations To find the boundary lines, we convert the inequalities into equations: 1. \( 2x + y = 6 \) 2. \( x = 2 \) 3. \( x = 0 \) (y-axis) 4. \( y = 0 \) (x-axis) ### Step 3: Find the intercepts of the lines For the line \( 2x + y = 6 \): - Set \( x = 0 \): \( y = 6 \) (Intercept at (0, 6)) - Set \( y = 0 \): \( 2x = 6 \) → \( x = 3 \) (Intercept at (3, 0)) ### Step 4: Plot the lines and identify the feasible region - The line \( x = 2 \) is a vertical line that intersects the x-axis at (2, 0). - The lines \( x = 0 \) and \( y = 0 \) are the axes. - The feasible region is bounded by the lines and lies in the first quadrant (where \( x \geq 0 \) and \( y \geq 0 \)). ### Step 5: Identify the corner points of the feasible region The corner points of the feasible region are: 1. \( (0, 0) \) 2. \( (2, 0) \) 3. \( (2, 2) \) (where \( x = 2 \) intersects \( 2x + y = 6 \)) 4. \( (0, 6) \) (the y-intercept of the line \( 2x + y = 6 \)) ### Step 6: Evaluate the objective function at each corner point Now we will calculate \( Z = 11x + 7y \) at each corner point: 1. At \( (0, 0) \): \( Z = 11(0) + 7(0) = 0 \) 2. At \( (2, 0) \): \( Z = 11(2) + 7(0) = 22 \) 3. At \( (2, 2) \): \( Z = 11(2) + 7(2) = 22 + 14 = 36 \) 4. At \( (0, 6) \): \( Z = 11(0) + 7(6) = 42 \) ### Step 7: Determine the maximum value of \( Z \) From the calculations: - \( Z(0, 0) = 0 \) - \( Z(2, 0) = 22 \) - \( Z(2, 2) = 36 \) - \( Z(0, 6) = 42 \) The maximum value of \( Z \) is \( 42 \) at the point \( (0, 6) \). ### Final Answer The maximum value of \( Z = 11x + 7y \) subject to the given constraints is **42**. ---

To solve the problem of maximizing \( Z = 11x + 7y \) subject to the constraints \( 2x + y \leq 6 \), \( x \leq 2 \), \( x \geq 0 \), and \( y \geq 0 \), we will follow these steps: ### Step 1: Identify the constraints The constraints given are: 1. \( 2x + y \leq 6 \) 2. \( x \leq 2 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE|8 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • MATRICES

    NCERT EXEMPLAR ENGLISH|Exercise Solved example|101 Videos

Similar Questions

Explore conceptually related problems

Maximise the function Z=11x+7y , subject to the constraints x le 3, yle 2, x ge 0, y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge 0

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

Minimise Z=13x-15y subject to the constraints x+y le 7, 2x-3y+6 ge 0, x ge 0, x ge 0, and y ge 0

Find graphically the minimum value of Z = 100x + 50y, subject to the constraints x + y le 300, 3x + y le 600, y le x + 200, x ge 0, y ge 0 .

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

x + y le 10, 4x + 3y le 24,x ge 0, y ge 0

2x + y ge 0