Home
Class 12
MATHS
Minimise Z=13x-15y subject to the constr...

Minimise Z=13x-15y subject to the constraints ` x+y le 7, 2x-3y+6 ge 0, x ge 0, x ge 0, and y ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of minimizing \( Z = 13x - 15y \) subject to the given constraints, we will follow a systematic approach. Here are the steps: ### Step 1: Identify the Constraints The constraints given are: 1. \( x + y \leq 7 \) 2. \( 2x - 3y + 6 \geq 0 \) or equivalently \( 2x - 3y \geq -6 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ### Step 2: Convert Inequalities to Equations To find the boundary lines of the constraints, we convert the inequalities into equations: 1. \( x + y = 7 \) 2. \( 2x - 3y = -6 \) ### Step 3: Find Intersection Points Now, we will find the points where these lines intersect the axes and each other. **For \( x + y = 7 \):** - If \( x = 0 \), then \( y = 7 \) → Point (0, 7) - If \( y = 0 \), then \( x = 7 \) → Point (7, 0) **For \( 2x - 3y = -6 \):** - If \( x = 0 \), then \( -3y = -6 \) → \( y = 2 \) → Point (0, 2) - If \( y = 0 \), then \( 2x = -6 \) → \( x = -3 \) (not feasible since \( x \geq 0 \)) ### Step 4: Find the Intersection of the Two Lines To find the intersection of \( x + y = 7 \) and \( 2x - 3y = -6 \): 1. From \( x + y = 7 \), we can express \( y = 7 - x \). 2. Substitute \( y \) into \( 2x - 3y = -6 \): \[ 2x - 3(7 - x) = -6 \] \[ 2x - 21 + 3x = -6 \] \[ 5x - 21 = -6 \] \[ 5x = 15 \implies x = 3 \] 3. Substitute \( x = 3 \) back into \( y = 7 - x \): \[ y = 7 - 3 = 4 \] Thus, the intersection point is (3, 4). ### Step 5: Identify the Feasible Region The feasible region is bounded by the points: - (0, 0) from \( x \geq 0 \) and \( y \geq 0 \) - (0, 2) from \( 2x - 3y + 6 \geq 0 \) - (3, 4) from the intersection of the lines - (7, 0) from \( x + y = 7 \) ### Step 6: Evaluate the Objective Function at Each Corner Point Now we evaluate \( Z = 13x - 15y \) at each corner point: 1. At (0, 0): \[ Z = 13(0) - 15(0) = 0 \] 2. At (0, 2): \[ Z = 13(0) - 15(2) = -30 \] 3. At (3, 4): \[ Z = 13(3) - 15(4) = 39 - 60 = -21 \] 4. At (7, 0): \[ Z = 13(7) - 15(0) = 91 \] ### Step 7: Determine the Minimum Value The minimum value of \( Z \) occurs at the point (0, 2) where \( Z = -30 \). ### Final Answer The minimum value of \( Z = 13x - 15y \) is \( -30 \) at the point \( (0, 2) \). ---

To solve the problem of minimizing \( Z = 13x - 15y \) subject to the given constraints, we will follow a systematic approach. Here are the steps: ### Step 1: Identify the Constraints The constraints given are: 1. \( x + y \leq 7 \) 2. \( 2x - 3y + 6 \geq 0 \) or equivalently \( 2x - 3y \geq -6 \) 3. \( x \geq 0 \) 4. \( y \geq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE|8 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • MATRICES

    NCERT EXEMPLAR ENGLISH|Exercise Solved example|101 Videos

Similar Questions

Explore conceptually related problems

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

2x + y ge 6, x + 2y ge 8, x ge 0, y ge 0

Maximise Z=3x+4y Subject to the constraints x+yle4,xge0,yge0

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

Maximise the function Z=11x+7y , subject to the constraints x le 3, yle 2, x ge 0, y ge 0

Determine the maximum value of Z=11x+7y subject to the constraints 2x+y le 6 , x le 2, x ge 0, y ge 0

x + y ge 24, 2x + y ge 32, x ge 0, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge 0

x + 2y le 10, x + y ge 1, x-y le 0, x ge 0, yge 0

2x + y ge 0