Home
Class 10
MATHS
State whether the following statements a...

State whether the following statements are true or false. Justify your answer:
The points A (-6,10), B(-4,6) and C(3,-8) are collinear such that
`AB` `=(2)/(9)AC`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the points A (-6, 10), B (-4, 6), and C (3, -8) are collinear and whether the statement \( AB = \frac{2}{9} AC \) is true, we will follow these steps: ### Step 1: Check for Collinearity To check if the points A, B, and C are collinear, we can calculate the area of triangle ABC using the formula: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Where: - \( A(x_1, y_1) = (-6, 10) \) - \( B(x_2, y_2) = (-4, 6) \) - \( C(x_3, y_3) = (3, -8) \) Substituting the coordinates into the formula: \[ \text{Area} = \frac{1}{2} \left| -6(6 - (-8)) + (-4)(-8 - 10) + 3(10 - 6) \right| \] Calculating each term: 1. \( -6(6 + 8) = -6 \times 14 = -84 \) 2. \( -4(-8 - 10) = -4 \times -18 = 72 \) 3. \( 3(10 - 6) = 3 \times 4 = 12 \) Now, substituting back into the area formula: \[ \text{Area} = \frac{1}{2} \left| -84 + 72 + 12 \right| = \frac{1}{2} \left| -84 + 84 \right| = \frac{1}{2} \left| 0 \right| = 0 \] Since the area is 0, the points A, B, and C are collinear. ### Step 2: Calculate Distances AB and AC Next, we need to calculate the lengths of segments AB and AC. **Distance AB:** Using the distance formula: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting the coordinates of A and B: \[ AB = \sqrt{(-4 - (-6))^2 + (6 - 10)^2} = \sqrt{(2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} \] **Distance AC:** Using the distance formula again: \[ AC = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2} \] Substituting the coordinates of A and C: \[ AC = \sqrt{(3 - (-6))^2 + (-8 - 10)^2} = \sqrt{(9)^2 + (-18)^2} = \sqrt{81 + 324} = \sqrt{405} = 9\sqrt{5} \] ### Step 3: Verify the Relationship \( AB = \frac{2}{9} AC \) Now we need to check if \( AB = \frac{2}{9} AC \): Calculating the right-hand side: \[ \frac{2}{9} AC = \frac{2}{9} \times 9\sqrt{5} = 2\sqrt{5} \] Since \( AB = 2\sqrt{5} \), we find that: \[ AB = \frac{2}{9} AC \] ### Conclusion Both statements are true. The points A, B, and C are collinear, and \( AB = \frac{2}{9} AC \).

To determine whether the points A (-6, 10), B (-4, 6), and C (3, -8) are collinear and whether the statement \( AB = \frac{2}{9} AC \) is true, we will follow these steps: ### Step 1: Check for Collinearity To check if the points A, B, and C are collinear, we can calculate the area of triangle ABC using the formula: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 7.3 Very Short Answer Type Questions|20 Videos
  • COORDINATE GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 7.4 Long Answer Type Questions|6 Videos
  • COORDINATE GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 7.4 Long Answer Type Questions|6 Videos
  • CONSTRUCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 10.4 Long Answer type Questions|7 Videos
  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPES QUESTIONS|18 Videos

Similar Questions

Explore conceptually related problems

State whether the following statements are true or false. Justify your answer: The points A(4,3), B(6,4), C(5,-6) and D(-3,5) are vertices of a parallelogram.

State, whether the following statements are true of false. If a lt b , then ac gt bc

State, whether the following statements are true of false. If a gt b , then a + c gt b + c

State, whether the following statements are true of false. If a lt b , then a - c lt b - c

Prove that the points (0,3), (4,6) and (-8, -3) are collinear.

Show that the points A(6,4) , B(9,7) and C(11,9) are collinear.

State whether the following statements are true or false. Most protozoans are photosynthetic. A. True B. False

State whether the following statements are true or false. a. D and L stereoisomers are enantiomers.

State whether the following statements are true or false. Justify your answer triangle ABC with vertices A (-2,0),B (2,0) and C (0,2) is similar to triangle DEF with vertices D (-4,0) ,E (4,0) and F (0,4).

State, whether the following statements are true of false. a - c gt b -d , then a + d gt b + c