Home
Class 12
MATHS
Show that f(x)=tan^(-1)(sinx+cosx) is an...

Show that `f(x)=tan^(-1)(sinx+cosx)` is an increasing function on the interval `(0,\ pi//4)` .

Text Solution

AI Generated Solution

To show that the function \( f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function on the interval \( (0, \frac{\pi}{4}) \), we will follow these steps: ### Step 1: Differentiate the function We start by differentiating the function \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \tan^{-1}(\sin x + \cos x) \right) \] Using the chain rule, we have: ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise Long answer types questions|10 Videos
  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPES QUESTIONS|25 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos

Similar Questions

Explore conceptually related problems

Show that f(x)=tan^(-1)(sinx+cosx) is a decreasing function on the interval on (pi//4,\ pi//2) .

Show that f(x)=tan^(-1)(sinx+cosx) is decreasing function on the interval (pi/4,pi/2)dot

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

Show that f(x)=sinx-cosx is an increasing function on (-pi//4,\ pi//4) .

Show that f(x)=sinx is an increasing function on (-pi//2,\ pi//2) .

Show that f(x)=x+cosx-a is an increasing function on R for all values of a .

Show that the function f given by f(x)=tan^(-1)(sinx+cosx), x" ">" "0 is always an strictly increasing function in (0,pi/4) .

Show that the function f given by f(x)=tan^(-1)(sinx+cosx), x" ">" "0 is always an strictly increasing function in (0,pi/4) .

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing function in (1) (pi/4,pi/2) (2) (-pi/2,pi/4) (3) (0,pi/2) (4) (-pi/2,pi/2)