Home
Class 12
MATHS
At x=(5pi)/6,\ \ f(x)=2sin3x+3cos3x is (...

At `x=(5pi)/6,\ \ f(x)=2sin3x+3cos3x` is (a) 0 (b) maximum (c) minimum (d) none of these

A

maximum

B

minimum

C

zero

D

neither maximum nor minimum

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = 2\sin(3x) + 3\cos(3x) \) at the point \( x = \frac{5\pi}{6} \) to determine if it is zero, a maximum, a minimum, or none of these. ### Step 1: Evaluate the function at \( x = \frac{5\pi}{6} \) We start by substituting \( x = \frac{5\pi}{6} \) into the function: \[ f\left(\frac{5\pi}{6}\right) = 2\sin\left(3 \cdot \frac{5\pi}{6}\right) + 3\cos\left(3 \cdot \frac{5\pi}{6}\right) \] Calculating \( 3 \cdot \frac{5\pi}{6} \): \[ 3 \cdot \frac{5\pi}{6} = \frac{15\pi}{6} = \frac{5\pi}{2} \] Now we can evaluate the sine and cosine: \[ f\left(\frac{5\pi}{6}\right) = 2\sin\left(\frac{5\pi}{2}\right) + 3\cos\left(\frac{5\pi}{2}\right) \] Using the periodic properties of sine and cosine: \[ \sin\left(\frac{5\pi}{2}\right) = \sin\left(\frac{5\pi}{2} - 2\pi\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] \[ \cos\left(\frac{5\pi}{2}\right) = \cos\left(\frac{5\pi}{2} - 2\pi\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] Substituting these values back into the function: \[ f\left(\frac{5\pi}{6}\right) = 2 \cdot 1 + 3 \cdot 0 = 2 \] ### Step 2: Differentiate the function Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(2\sin(3x) + 3\cos(3x)) \] Using the chain rule: \[ f'(x) = 2 \cdot 3\cos(3x) - 3 \cdot 3\sin(3x) = 6\cos(3x) - 9\sin(3x) \] ### Step 3: Find critical points Set the derivative equal to zero to find critical points: \[ 6\cos(3x) - 9\sin(3x) = 0 \] Rearranging gives: \[ 6\cos(3x) = 9\sin(3x) \] Dividing both sides by \( 3\cos(3x) \) (assuming \( \cos(3x) \neq 0 \)): \[ \tan(3x) = \frac{2}{3} \] ### Step 4: Solve for \( x \) Taking the arctangent: \[ 3x = \tan^{-1}\left(\frac{2}{3}\right) + n\pi \quad (n \in \mathbb{Z}) \] Thus, \[ x = \frac{1}{3}\tan^{-1}\left(\frac{2}{3}\right) + \frac{n\pi}{3} \] ### Step 5: Determine if \( x = \frac{5\pi}{6} \) is a critical point To check if \( x = \frac{5\pi}{6} \) is a critical point, we note that: \[ \frac{5\pi}{6} \neq \frac{1}{3}\tan^{-1}\left(\frac{2}{3}\right) + \frac{n\pi}{3} \] This means that \( x = \frac{5\pi}{6} \) is not a critical point. ### Conclusion Since \( f\left(\frac{5\pi}{6}\right) = 2 \) (which is not zero) and \( x = \frac{5\pi}{6} \) is not a critical point, we conclude that the function is neither zero, maximum, nor minimum at this point. Thus, the answer is **(d) none of these**. ---

To solve the problem, we need to analyze the function \( f(x) = 2\sin(3x) + 3\cos(3x) \) at the point \( x = \frac{5\pi}{6} \) to determine if it is zero, a maximum, a minimum, or none of these. ### Step 1: Evaluate the function at \( x = \frac{5\pi}{6} \) We start by substituting \( x = \frac{5\pi}{6} \) into the function: \[ f\left(\frac{5\pi}{6}\right) = 2\sin\left(3 \cdot \frac{5\pi}{6}\right) + 3\cos\left(3 \cdot \frac{5\pi}{6}\right) ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|5 Videos
  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise Long answer types questions|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos

Similar Questions

Explore conceptually related problems

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

Let f(x)=x^3+3x^2-9x+2 . Then, f(x) has a maximum at x=1 (b) a minimum at x=1 (c) neither a maximum nor a minimum at x=-3 (d) none of these

The minimum value of f(x)=x^4-x^2-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

At x = (5 pi)/( 6) , the function f (x) = 2 sin 3 x + 3 cos 3 x is

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

int_-(pi/3)^(pi/3) (x^3cosx)/sin^2xdx= (A) 0 (B) 1 (C) -1 (D) none of these

The function f(x)=-x//2+sinx defined on [-pi//3,\ pi//3] is (a) increasing (b) decreasing (c) constant (d) none of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

The solution of the equation sin^3x+sinxcosx+cos^3x=1 is (n∈N) (a) 2npi (b) (4n+1)pi/2 (c) (2n+1)pi (d) None of these

Let f(x) be a function defined as follows: f(x)=sin(x^2-3x),xlt=0; and 6x+5x^2,x >0 Then at x=0,f(x) (a) has a local maximum (b) has a local minimum (c) is discontinuous (d) none of these

NCERT EXEMPLAR ENGLISH-APPLICATION OF DERIVATIVES-OBJECTIVE TYPES QUESTIONS
  1. If y=x^4-12 and if x changes from 2 to 1.99. what is the appoinmate ch...

    Text Solution

    |

  2. Find the equation of the tangent to the curve (1+x^2)y=2-x , where it ...

    Text Solution

    |

  3. The points at which the tangents to the curve y=x^(3)-12x+18 are paral...

    Text Solution

    |

  4. The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis a...

    Text Solution

    |

  5. The slope of the tangent to the curve x=t^2+3t-8,\ \ y=2t^2-2t-5 at ...

    Text Solution

    |

  6. What is the angle between these two curves x^3-3xy^2+2=0 and 3x^2y-y^3...

    Text Solution

    |

  7. 24. Find the intervals in which the following function is (a) increasi...

    Text Solution

    |

  8. The function f:R rarr R be defined by f(x)=2x+cosx then f

    Text Solution

    |

  9. If y=x(x-3)^(2) decreases for the values of x given by

    Text Solution

    |

  10. The function f(x) =4sin^(3)x-6sin^(2)x +12 sinx + 100 is strictly

    Text Solution

    |

  11. Which of the following functions are decreasing on (0,\ pi//2) ? (i) c...

    Text Solution

    |

  12. The function f(x)= tan x - x

    Text Solution

    |

  13. If x is real, then the minimum value of the expression x^2-8x+17 is

    Text Solution

    |

  14. Find the least value of the function f(x)=x^3-18 x^2+96 x in the inter...

    Text Solution

    |

  15. Show that the least value of the function f(x)=2x^3-3x^2-12x+1 on [-2,...

    Text Solution

    |

  16. Show that The maximum value of sinx. cosx in R is 1/2

    Text Solution

    |

  17. At x=(5pi)/6,\ \ f(x)=2sin3x+3cos3x is (a) 0 (b) maximum (c) minimum (...

    Text Solution

    |

  18. The maximum slope of curve y =-x^(3)+3x^(2)+9x-27 is

    Text Solution

    |

  19. The function f(x)=x^(x) has a stationary point at

    Text Solution

    |

  20. Show that the maximum value of (1/x)^x is e^(1//e) .

    Text Solution

    |