Home
Class 12
MATHS
Show that the maximum value of (1/x)^...

Show that the maximum value of `(1/x)^x` is `e^(1//e)` .

A

e

B

`e^( e)`

C

`e^(1//e)`

D

`(1/e)^(1//e)`

Text Solution

AI Generated Solution

The correct Answer is:
To show that the maximum value of the function \( f(x) = \left(\frac{1}{x}\right)^x \) is \( e^{\frac{1}{e}} \), we will follow these steps: ### Step 1: Define the function Let \[ y = \left(\frac{1}{x}\right)^x \] This can be rewritten as: \[ y = x^{-x} \] ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we get: \[ \ln y = \ln(x^{-x}) = -x \ln x \] ### Step 3: Differentiate using implicit differentiation Now, differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\ln y) = \frac{1}{y} \frac{dy}{dx} \] Using the product rule on the right side: \[ \frac{d}{dx}(-x \ln x) = -\left(\ln x + 1\right) \] Thus, we have: \[ \frac{1}{y} \frac{dy}{dx} = -\left(\ln x + 1\right) \] ### Step 4: Solve for \(\frac{dy}{dx}\) Multiplying both sides by \( y \): \[ \frac{dy}{dx} = y \cdot -(\ln x + 1) \] Substituting \( y = \left(\frac{1}{x}\right)^x \): \[ \frac{dy}{dx} = \left(\frac{1}{x}\right)^x \cdot -(\ln x + 1) \] ### Step 5: Find critical points To find the critical points, set \( \frac{dy}{dx} = 0 \): \[ \left(\frac{1}{x}\right)^x \cdot -(\ln x + 1) = 0 \] Since \( \left(\frac{1}{x}\right)^x \) is never zero, we have: \[ -\ln x - 1 = 0 \implies \ln x = -1 \implies x = e^{-1} = \frac{1}{e} \] ### Step 6: Evaluate the function at the critical point Now, substitute \( x = \frac{1}{e} \) back into the original function to find the maximum value: \[ f\left(\frac{1}{e}\right) = \left(\frac{1}{\frac{1}{e}}\right)^{\frac{1}{e}} = e^{\frac{1}{e}} \] ### Conclusion Thus, the maximum value of \( \left(\frac{1}{x}\right)^x \) is: \[ \boxed{e^{\frac{1}{e}}} \] ---

To show that the maximum value of the function \( f(x) = \left(\frac{1}{x}\right)^x \) is \( e^{\frac{1}{e}} \), we will follow these steps: ### Step 1: Define the function Let \[ y = \left(\frac{1}{x}\right)^x \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|5 Videos
  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise Long answer types questions|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos

Similar Questions

Explore conceptually related problems

Show that (logx)/x has a maximum value at x=e .

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

Find the maximum value of the function x * e^(-x) .

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

Given the function f(x)=x^2e^-(2x) ,x>0. Then f(x) has the maximum value equal to a) e^-1 b) (2e)^-1 . c) e^-2 d) none of these

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

NCERT EXEMPLAR ENGLISH-APPLICATION OF DERIVATIVES-OBJECTIVE TYPES QUESTIONS
  1. If y=x^4-12 and if x changes from 2 to 1.99. what is the appoinmate ch...

    Text Solution

    |

  2. Find the equation of the tangent to the curve (1+x^2)y=2-x , where it ...

    Text Solution

    |

  3. The points at which the tangents to the curve y=x^(3)-12x+18 are paral...

    Text Solution

    |

  4. The tangent to the curve y=e^(k x) at a point (0,1) meets the x-axis a...

    Text Solution

    |

  5. The slope of the tangent to the curve x=t^2+3t-8,\ \ y=2t^2-2t-5 at ...

    Text Solution

    |

  6. What is the angle between these two curves x^3-3xy^2+2=0 and 3x^2y-y^3...

    Text Solution

    |

  7. 24. Find the intervals in which the following function is (a) increasi...

    Text Solution

    |

  8. The function f:R rarr R be defined by f(x)=2x+cosx then f

    Text Solution

    |

  9. If y=x(x-3)^(2) decreases for the values of x given by

    Text Solution

    |

  10. The function f(x) =4sin^(3)x-6sin^(2)x +12 sinx + 100 is strictly

    Text Solution

    |

  11. Which of the following functions are decreasing on (0,\ pi//2) ? (i) c...

    Text Solution

    |

  12. The function f(x)= tan x - x

    Text Solution

    |

  13. If x is real, then the minimum value of the expression x^2-8x+17 is

    Text Solution

    |

  14. Find the least value of the function f(x)=x^3-18 x^2+96 x in the inter...

    Text Solution

    |

  15. Show that the least value of the function f(x)=2x^3-3x^2-12x+1 on [-2,...

    Text Solution

    |

  16. Show that The maximum value of sinx. cosx in R is 1/2

    Text Solution

    |

  17. At x=(5pi)/6,\ \ f(x)=2sin3x+3cos3x is (a) 0 (b) maximum (c) minimum (...

    Text Solution

    |

  18. The maximum slope of curve y =-x^(3)+3x^(2)+9x-27 is

    Text Solution

    |

  19. The function f(x)=x^(x) has a stationary point at

    Text Solution

    |

  20. Show that the maximum value of (1/x)^x is e^(1//e) .

    Text Solution

    |