Home
Class 12
MATHS
evaluate: |(x^(2)-x+1, x-1),(x+1,x+1)|...

evaluate: `|(x^(2)-x+1, x-1),(x+1,x+1)|`

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have `|(x^(2)-x+1, x-1),(x+1,x+1)|=|(x^(2)-2x+2,x-1),(0,x+1)|` [ ` :'C_(1)toC_(1)-C_(2)`]
`=(x^(2)-2x+2).(x+1)-(x-1).0`
`x^(3)-2x^(2)+2x+x^(2)-2x+2`
`=x^(3)-2x^(2)+2x+x^(2)-2x+2`
`=x^(3)-x^(2)+2`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate |(x, x+1),(x-1,x)|

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate: int(x^2)/((x-1)(x+1)^2)\ dx

Evaluate: int (x^2-1)/(( x+1) (x-2))dx

Find the value of x if i) |[x^(2)-x+1,x+1],[x+1,x+1]|=0

Find (lim)_(x->1)f(x) ,where f(x)={(x^2-1, xlt=1),(-x^2-1, x >1):}

Evaluate: int(x+x^(2/3)+x^(1/6))/(x(1+x^(1/3)))dx equals