Home
Class 12
MATHS
evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)...

evaluate: `|(a+x,y,z),(x,a+y,z),(x,y,a+z)|`

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have `|(a+x, y, z),(x, a+y, z),(x, y, a+z)|=|(a, -a, 0),(0,a,-a),(x,y,a+z)|`
`[ ( :'R_(1)toR_(1)-R_(2)), "and"(R_(2)toR_(2)-R_(3))]`
`|(a,0,0),(0,a,-a),(x,x+y,a+z)|` `[ :' C_(2)toC_(2)+C_(1)]`
`=a(a^(2)+az+ax+ay)`
`=a^(2)(a+z+x+y)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z),(x, y,a+z)|=a^2(a+x+y+z)

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .

Using Cofactors of elements of third column, evaluate Delta=|(1,x, y z),(1,y, z x),(1,z, x y)|

The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,y,z)| , is

Find the value of y, if the matrix A = ((0,2y,z),(x,y,-z),(x,-y,z)) obeys the law A^(T).A = I .

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)