Home
Class 12
MATHS
evaluate: |(0,xy^(2),xz^(2)),(x^(2)y,0,y...

evaluate: `|(0,xy^(2),xz^(2)),(x^(2)y,0,yz^(2)),(x^(2)z,zy^(2),0)|`

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have `|(0,xy^(2),xz^(2)),(x^(2)y,0,yz^(2)),(x^(2),zy^(2),0)|=x^(2)y^(2)z^(2)|(0,x,x),(y,0,y),(z,z,0)|`
[ taking `x^(2),y^(2)` and `z^(2)` common from `C_(1),C_(2)` and `C_(3)`, respectively]
`=x^(2)y^(2)z^(2)|(0,0,x),(y,-y,y),(z,z,0)| [ :. C_(2)toC_(2)-C-(3)]`
`=x^(2)y^(2)z^(2)[x(yz+yz)]`
`=x^(2)y^(2)z^(2).2xyz=2x^(3)y^(3)z^(3)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)),(xz-y^(2),,xy-z^(2),,yz-x^(2)),(xy-z^(2),,yz-x^(2),,zx-y^(2)):}|=|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}| then

if x=31,y=32 and z=33 then the value of |{:((x^(2)+1)^(2),,(xy+1)^(2),,(xz+1)^(2)),((xy+1)^(2),,(y^(2)+1)^(2),,(yz+1)^(2)),((xz+1)^(2),,(yz+1)^(2),,(z^(2)+1)^(2)):}|" is " "____"

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

Evaluate the following: |[0,x y^2,x z^2],[x^2y,0,y z^2],[x^2z, z y^2, 0]|

In each polynomial, given below, separate the like terms : y^(2)z^(3), xy^(2)z^(3), -5x^(2)yz, -4y^(2)z^(3), -8xz^(3)y^(2), 3x^(2)yz and 2z^(3)y^(2)

If x + 2y + 3z = 0 and x^(3) + 4y^(3) + 9z^(3)= 18 xyz , evaluate: ((x+2y)^(2))/(xy) + ((2y + 3z)^(2))/(yz) + ((3z+ x)^(2))/(zx)

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,b,,c),(x,,y,,z),(yz,,xz,,xy):}|

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

y^2dx+(x^2-xy+y^2)dy=0