Home
Class 12
MATHS
evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(...

evaluate: `|(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \( D = \begin{vmatrix} 3x & -x+y & -x+z \\ x-y & 3y & z-y \\ x-z & y-z & 3z \end{vmatrix} \), we will follow a systematic approach. ### Step 1: Apply Column Transformation We will transform the first column \( C_1 \) by adding the second column \( C_2 \) and the third column \( C_3 \) to it. This gives us: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] After this transformation, the determinant becomes: \[ D = \begin{vmatrix} 3x + (-x+y) + (-x+z) & -x+y & -x+z \\ (x-y) + 3y + (z-y) & 3y & z-y \\ (x-z) + (y-z) + 3z & y-z & 3z \end{vmatrix} \] Calculating the first column: - First row: \( 3x - x + y - x + z = x + y + z \) - Second row: \( x - y + 3y + z - y = x + 2y + z \) - Third row: \( x - z + y - z + 3z = x + y + z \) Thus, we have: \[ D = \begin{vmatrix} x+y+z & -x+y & -x+z \\ x+2y+z & 3y & z-y \\ x+y+z & y-z & 3z \end{vmatrix} \] ### Step 2: Factor Out Common Terms Notice that the first column has \( x+y+z \) in both the first and third rows. We can factor out \( x+y+z \) from the first column: \[ D = (x+y+z) \begin{vmatrix} 1 & -x+y & -x+z \\ x+2y+z & 3y & z-y \\ 1 & y-z & 3z \end{vmatrix} \] ### Step 3: Row Operations Next, we will perform row operations to simplify the determinant. We will perform: - \( R_1 \rightarrow R_1 - R_3 \) - \( R_2 \rightarrow R_2 - R_3 \) This gives us: \[ D = (x+y+z) \begin{vmatrix} 0 & -x+y - (y-z) & -x+z - 3z \\ x+2y+z - (1) & 3y - 3z & z-y - 3z \\ 1 & y-z & 3z \end{vmatrix} \] Calculating the new rows: - First row becomes: \( 0, -x + 2z, -x - 2z \) - Second row becomes: \( x + 2y + z - 1, 3y - 3z, z - 4z \) Thus, we have: \[ D = (x+y+z) \begin{vmatrix} 0 & -x + 2z & -x - 2z \\ x + 2y + z - 1 & 3y - 3z & -2z \\ 1 & y-z & 3z \end{vmatrix} \] ### Step 4: Expand the Determinant Now we can expand the determinant using the first column: \[ D = (x+y+z) \cdot 0 + (-x + 2z) \cdot \begin{vmatrix} x + 2y + z - 1 & -2z \\ 1 & 3z \end{vmatrix} \] Calculating the 2x2 determinant: \[ = (x + 2y + z - 1)(3z) - (-2z)(1) = 3z(x + 2y + z - 1) + 2z = 3zx + 6zy + 3z^2 - 3z + 2z \] Combining terms gives us: \[ = 3zx + 6zy + 3z^2 - z \] ### Final Step: Combine Everything Thus, the final expression for the determinant is: \[ D = 3(x+y+z)(xy + xz + yz) \] ### Final Answer The evaluated determinant is: \[ D = 3(x+y+z)(xy + xz + yz) \]

To evaluate the determinant \( D = \begin{vmatrix} 3x & -x+y & -x+z \\ x-y & 3y & z-y \\ x-z & y-z & 3z \end{vmatrix} \), we will follow a systematic approach. ### Step 1: Apply Column Transformation We will transform the first column \( C_1 \) by adding the second column \( C_2 \) and the third column \( C_3 \) to it. This gives us: \[ C_1 \rightarrow C_1 + C_2 + C_3 \] After this transformation, the determinant becomes: ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

Write the value of |(x+y,y+z,z+x),(z,x,y),(-3,-3,-3)|

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 then the value of x is

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}| =(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1