Home
Class 12
MATHS
prove that:|(y^(2)z^(2),yz,y+z),(z^(2)x^...

prove that:`|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0`

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have to prove
`|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0`
`LHS=|(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=1/(xyz)|(x^(2)y^(2)z^(2),xyz,xy+xz),(x^(2)yz^(2),xyz,yz+xy),(x^(2)y^(2)z,xyz,xz+yz)|`
`[ :' R_(1)toxR_(1),R_(2)toyR_(2),R_(3)tozR_(3)]`
`=1/(xyz) (xyz)^(2)|(yz, 1, xy+xz),(xz, 1, yz+xy),(xy, 1, xz+yz)|`
[taking `(xyz)` common from `C_(1)` and `C_(2)`]
`=xyz|(yz,1,xy+yz+zx),(xz,1,xy+yz+zx),(xy,1,xy+yz+zx)|[C_(3)toC_(3)+C_(1)]`
`=xyz(xy+yz+zx)|(yz,1,1),(xz,1,1),(xy,1,1)|`
[taking `(xy+yz+zx)` common from `C_(3)`]
`=0` [since `C_(2)` and `C_(3)` are identicals ]
`=RHS`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)),(xz-y^(2),,xy-z^(2),,yz-x^(2)),(xy-z^(2),,yz-x^(2),,zx-y^(2)):}|=|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}| then

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

In each polynomial, given below, separate the like terms : y^(2)z^(3), xy^(2)z^(3), -5x^(2)yz, -4y^(2)z^(3), -8xz^(3)y^(2), 3x^(2)yz and 2z^(3)y^(2)

Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2x y z(x+y+z)^3 .