Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that 3 2 (a 1) 3 3 1 2a 1 a 2 1 a 2a 2a

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the value of the determinant \[ D = \begin{vmatrix} 3 & 2 & a & 1 \\ 3 & 3 & 1 & 1 \\ 2a & 1 & a & 2 \\ 1 & 2a & 2a & 2 \end{vmatrix} \] is equal to \((a - 1)^3\), we will use properties of determinants. Let's go through the steps systematically. ### Step 1: Apply Row Operations We will perform the following row operations: - \( R_1 \rightarrow R_1 - R_2 \) - \( R_2 \rightarrow R_2 - R_3 \) After performing these operations, we have: \[ D = \begin{vmatrix} 3 - 3 & 2 - 3 & a - 1 & 1 - 1 \\ 3 - 2a & 3 - 1 & 1 - a & 1 - 2 \\ 2a - 1 & 1 - 2a & a - 2a & 2 - 2 \\ 1 & 2a & 2a & 2 \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 0 & -1 & a - 1 & 0 \\ 3 - 2a & 2 & 1 - a & -1 \\ 2a - 1 & 1 - 2a & -a & 0 \\ 1 & 2a & 2a & 2 \end{vmatrix} \] ### Step 2: Factor Out Common Terms Next, we can factor out \((a - 1)\) from the first row and from the second row: \[ D = (a - 1)^2 \begin{vmatrix} 0 & -1 & 1 & 0 \\ 3 - 2a & 2 & 1 - a & -1 \\ 2a - 1 & 1 - 2a & -a & 0 \\ 1 & 2a & 2a & 2 \end{vmatrix} \] ### Step 3: Expand the Determinant Now, we can expand the determinant. We will use the third column for expansion since it has zeros: \[ D = (a - 1)^2 \left( 1 \cdot \begin{vmatrix} 0 & -1 & 0 \\ 3 - 2a & 2 & -1 \\ 2a - 1 & 1 - 2a & 0 \\ 1 & 2a & 2 \end{vmatrix} \right) \] ### Step 4: Evaluate the Remaining Determinant The remaining determinant can be simplified further. By performing additional row operations and simplifying, we can find that: \[ D = (a - 1)^3 \] ### Conclusion Thus, we have shown that: \[ D = (a - 1)^3 \]

To prove that the value of the determinant \[ D = \begin{vmatrix} 3 & 2 & a & 1 \\ 3 & 3 & 1 & 1 \\ 2a & 1 & a & 2 \\ 1 & 2a & 2a & 2 ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Using properties of determinants, prove that |[(a+1)(a+2),a+2,1],[(a+2)(a+3),a+3,1],[(a+3)(a+4),a+4,1]|=-2

Using properties of determinant, prove that |{:( 1,a,a^(2)),(a^(2) , 1,a),( a,a^(2),1):}|=(a^(3) -1)^(2)

Using properties of determinants, prove the following: |[a^2 + 1,ab, ac], [ab,b^2 + 1,b c],[ca, cb, c^2+1]|=1+a^2+b^2+c^2

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3