Home
Class 12
MATHS
Find the value of theta if |[1,1,sin 3th...

Find the value of `theta` if `|[1,1,sin 3theta] , [-4,3,cos 2theta] , [7, -7, -2]|=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of `theta` such that the determinant \[ \begin{vmatrix} 1 & 1 & \sin(3\theta) \\ -4 & 3 & \cos(2\theta) \\ 7 & -7 & -2 \end{vmatrix} = 0, \] we will follow these steps: ### Step 1: Apply Column Transformation We can simplify the determinant by applying the transformation \( C_1 \rightarrow C_1 - C_2 \). \[ \begin{vmatrix} 1 - 1 & 1 & \sin(3\theta) \\ -4 - 3 & 3 & \cos(2\theta) \\ 7 - (-7) & -7 & -2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & \sin(3\theta) \\ -7 & 3 & \cos(2\theta) \\ 14 & -7 & -2 \end{vmatrix} \] ### Step 2: Factor Out Common Terms Now we can factor out common terms from the determinant. Notice that the second row can be simplified: \[ = 7 \cdot \begin{vmatrix} 0 & 1 & \sin(3\theta) \\ -1 & 3 & \cos(2\theta) \\ 2 & -1 & -2 \end{vmatrix} \] ### Step 3: Expand the Determinant Now we can expand the determinant along the first column: \[ = 7 \cdot \left( 0 \cdot \begin{vmatrix} 3 & \cos(2\theta) \\ -1 & -2 \end{vmatrix} - 1 \cdot \begin{vmatrix} -1 & \cos(2\theta) \\ 2 & -2 \end{vmatrix} + \sin(3\theta) \cdot \begin{vmatrix} -1 & 3 \\ 2 & -1 \end{vmatrix} \right) \] Calculating the 2x2 determinants: \[ = 7 \cdot \left( -\begin{vmatrix} -1 & \cos(2\theta) \\ 2 & -2 \end{vmatrix} + \sin(3\theta) \cdot \begin{vmatrix} -1 & 3 \\ 2 & -1 \end{vmatrix} \right) \] Calculating these determinants: 1. \(\begin{vmatrix} -1 & \cos(2\theta) \\ 2 & -2 \end{vmatrix} = (-1)(-2) - (2)(\cos(2\theta)) = 2 - 2\cos(2\theta)\) 2. \(\begin{vmatrix} -1 & 3 \\ 2 & -1 \end{vmatrix} = (-1)(-1) - (3)(2) = 1 - 6 = -5\) ### Step 4: Substitute Back Substituting back into the determinant: \[ = 7 \cdot \left( - (2 - 2\cos(2\theta)) - 5\sin(3\theta) \right) = 7 \cdot \left( -2 + 2\cos(2\theta) + 5\sin(3\theta) \right) \] Setting the determinant equal to zero: \[ -2 + 2\cos(2\theta) + 5\sin(3\theta) = 0 \] ### Step 5: Rearranging the Equation Rearranging gives: \[ 2\cos(2\theta) + 5\sin(3\theta) = 2 \] ### Step 6: Use Trigonometric Identities Using the identities \(\cos(2\theta) = 1 - 2\sin^2(\theta)\) and \(\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)\): Substituting these identities into the equation: \[ 2(1 - 2\sin^2(\theta)) + 5(3\sin(\theta) - 4\sin^3(\theta)) = 2 \] ### Step 7: Simplifying the Equation This simplifies to: \[ 2 - 4\sin^2(\theta) + 15\sin(\theta) - 20\sin^3(\theta) = 2 \] This leads to: \[ -4\sin^2(\theta) + 15\sin(\theta) - 20\sin^3(\theta) = 0 \] ### Step 8: Factor the Equation Factoring out \(\sin(\theta)\): \[ \sin(\theta)(-20\sin^2(\theta) - 4\sin(\theta) + 15) = 0 \] ### Step 9: Solve for \(\sin(\theta)\) This gives us two cases: 1. \(\sin(\theta) = 0\) 2. \(-20\sin^2(\theta) - 4\sin(\theta) + 15 = 0\) ### Step 10: Finding Values of \(\theta\) For \(\sin(\theta) = 0\), we have: \[ \theta = n\pi, \quad n \in \mathbb{Z} \] For the quadratic equation, we can use the quadratic formula to find the roots. ### Final Answer The values of \(\theta\) that satisfy the original determinant equation are: \[ \theta = n\pi \quad \text{and the solutions from the quadratic equation.} \]

To find the value of `theta` such that the determinant \[ \begin{vmatrix} 1 & 1 & \sin(3\theta) \\ -4 & 3 & \cos(2\theta) \\ 7 & -7 & -2 \end{vmatrix} = 0, ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of θ if cos theta=sqrt(3)(1-sin theta)

Find the values of theta which satisfy r sin theta=3 and r=4 (1 + sin theta), 0 <= theta <= 2 pi

Find all the value of theta satisfying the equation , sin 7 theta = sin theta + sin 3 theta such that 0 le theta le pi

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

Find the value of cos theta. cos 2theta. cos 2^(2)theta . cos 2^(3)theta"……." cos 2^(n-1) theta is

Given : 4 sin theta = 3 cos theta , find the value of : (i) sin theta (ii) cos theta (iii) cot^(2) theta - "cosec"^(2) theta (iv) 4 cos^(2) theta - 3 sin^(2) theta + 2

Find the values of theta , for which cos3theta + sin3theta + (2sin2theta-3)(sintheta-costheta) is always positive.

If sin theta=(7)/(25) ,Find the value of cos theta

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .