Home
Class 12
MATHS
If |[4-x, 4+x, 4+x], [4+x, 4-x, 4+x],[4...

If `|[4-x, 4+x, 4+x], [4+x, 4-x, 4+x],[4+x, 4+x, 4-x]| = 0` find the value of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \(|[4-x, 4+x, 4+x], [4+x, 4-x, 4+x], [4+x, 4+x, 4-x]| = 0\), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} \] ### Step 2: Apply Row Transformation We can simplify the determinant by transforming the first row \(R_1\) to \(R_1 + R_2 + R_3\): \[ R_1 \rightarrow R_1 + R_2 + R_3 \] This gives us: \[ D = \begin{vmatrix} (4-x) + (4+x) + (4+x) & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} \] Calculating the first row: \[ = \begin{vmatrix} 12 & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} \] ### Step 3: Factor Out Common Terms Next, we can factor out \(12 + x\) from the first column: \[ D = (12 + x) \begin{vmatrix} 1 & \frac{4+x}{12} & \frac{4+x}{12} \\ \frac{4+x}{12} & \frac{4-x}{12} & \frac{4+x}{12} \\ \frac{4+x}{12} & \frac{4+x}{12} & \frac{4-x}{12} \end{vmatrix} \] ### Step 4: Column Transformation Now, we perform column transformations \(C_1 \rightarrow C_1 - C_2\) and \(C_2 \rightarrow C_2 - C_3\): \[ D = (12 + x) \begin{vmatrix} 1 - 1 & 0 & 0 \\ \frac{4+x}{12} - \frac{4-x}{12} & \frac{4-x}{12} - \frac{4+x}{12} & \frac{4+x}{12} \\ \frac{4+x}{12} - \frac{4+x}{12} & \frac{4+x}{12} - \frac{4-x}{12} & \frac{4-x}{12} \end{vmatrix} \] This simplifies to: \[ D = (12 + x) \begin{vmatrix} 0 & 0 & 0 \\ \frac{2x}{12} & -\frac{2x}{12} & \frac{4+x}{12} \\ 0 & \frac{2x}{12} & \frac{4-x}{12} \end{vmatrix} \] ### Step 5: Expand the Determinant Since the first column has all zeros, we can expand the determinant: \[ D = (12 + x) \cdot 0 = 0 \] Thus, we need to consider the factors: 1. \(12 + x = 0\) 2. The determinant of the remaining matrix must also equal zero. ### Step 6: Solve for \(x\) From \(12 + x = 0\): \[ x = -12 \] ### Step 7: Solve the Quadratic Now, we also need to solve the quadratic equation from the determinant: \[ 4x^2 = 0 \implies x = 0 \] ### Final Values The possible values of \(x\) are: \[ x = 0 \quad \text{and} \quad x = -12 \] ### Summary of Solutions Thus, the final answer is: \[ x = 0 \quad \text{or} \quad x = -12 \]

To solve the determinant equation \(|[4-x, 4+x, 4+x], [4+x, 4-x, 4+x], [4+x, 4+x, 4-x]| = 0\), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

If |[1, x, x^2], [x, x^2, 1], [x^2, 1, x]|=3, then find the value of |[x^3-1, 0, x-x^4], [0, x-x^4, x^3-1], [x-x^4, x^3-1, 0]|

Find the value of (x+4) (x+4)

If x+1/x=4, find the values of x^4+1/(x^4)

If 2^4\ xx\ 4^2=16^x , then find the value of x ?

If x^4+1/(x^4)=47 , find the value of x^3+1//x^3

If 4x+2=4 , what is the value of 4x-6 ?

If x^4+1/(x^4)=119 , find the value of x^3-1/(x^3)

If (2x4)(x-8)=0 , find the positive value of x

If [[(x+3y),y],[7-x,4]]=[(4,-1),(0,1)], find the values of x and y.

If x+1/x=9. find the value of x^4+1/(x^4)dot