Home
Class 12
MATHS
Show that DeltaABC is an isosceles trian...

Show that `DeltaABC` is an isosceles triangle, if the determinant
`Delta=|(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^(2)A+cosA,cos^(2)B+cosB,cos^(2)C+cosC)|=0` .

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have `Delta=|(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^(2)A+cosA,cos^(2)B+cosB,cos^(2)C+cosC)|=0`
`Delta=|[0,0,1],[cosA-cosC,cosB-cosC,1+cosC],[cos^(2)A+cosA-cos^(2)C-cosC,cos^(2)B+cosB-cos^(2)C-cosC,cos^(2)C+cosC]|=0`
`[ :' C_(1)toC_(1)-C_(3)` and `C_(2)toC_(2)-C_(3)]`
`implies (cosA-cosC).(cosB-cosC)`
`implies (cosA-cosC).(cosB-cosC)`
`|(0,0,1),(1,1,1+cosC),(cosA+cosC+1,cosB+cosC+1,cos^(2)C+cosC)|=0`
[taking `(cosA-cosC)` common from `C_(1)` and `(cosB-cosC)` common from `C_(2)`]
`implies (cosA-cosC).(cosB-cosC)[(cosB+cosC+1)-(cosA+cosC+1)]=0`
`= (cosA-cosC).(cosB-cosC)(cosB+cosC+1-cosA-cosC-1)=0`
`implies(cosA-cosC).(cosB-cosC)(cosB-cosA)=0`
i.e., `cosA =cosC` or `cosB=cosC` or `cosB=cosA`
`implies A=C` or `B=C` or `B=A`
Hence `ABC` is an isosceles triangle.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, show that ABC is isosceles if |(1,1,1),(1+cosA,1+cosB,1+cosC),(cos^2A+cosA,cos^2B+cosB,cos^2C+cosC)|=0

Using properties of determinants, show that triangle ABC is isosceles, if : |(1,1,1),(1+cosA, 1+cosB, 1+cosC),(sqrecosA+cosA, cossqrB+cosB, cossqurC+cosC)| =0

(a+b+c)(cosA+cosB+cosC)

If A,B and C are angles of a triangle then the determinant |(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1)| is equal to

In DeltaABC, show that (1-cosA+cosB+cosC)/(1-cosC+cosA+cosB)=tan(A/2) cot (C/2).

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

In a DeltaABC , a(cos^(2)B+cos^(2)C)+cosA( c cosC+bcosB)=

a(cosC-cosB)=2(b-c)cos^2A/2

In a A B C ,if|1 1 1 1+cosA 1+cosB 1+cosC cos^2A+A cos^2B+cosB cos^2C+cosC|=0 show that A B C is an isosceles.

In a triangle ABC, prove that: cos^4A+cos^4B+cos^4C= 3/2 + 2 cosA cosB cosC+ 1/2 cos 2A cos2B cos2C