Home
Class 12
MATHS
Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0...

Find `A^(-1)` if `A=|(0,1,1),(1,0,1),(1,1,0)|` and show that `A^(-1)=(A^(2)-3I)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A \) and show that \( A^{-1} = \frac{A^2 - 3I}{2} \), we will follow these steps: ### Step 1: Define the Matrix \( A \) Given: \[ A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated as: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 0 \cdot (0 \cdot 0 - 1 \cdot 1) - 1 \cdot (1 \cdot 0 - 1 \cdot 1) + 1 \cdot (1 \cdot 1 - 0 \cdot 1) \] Calculating each term: \[ = 0 - 1 \cdot (-1) + 1 \cdot 1 = 1 + 1 = 2 \] ### Step 3: Calculate the Cofactor Matrix To find the cofactor matrix, we calculate the cofactor for each element of \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot \text{det}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1 \cdot (0 \cdot 0 - 1 \cdot 1) = -1 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot \text{det}\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = -1 \cdot (1 \cdot 0 - 1 \cdot 1) = 1 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = (-1)^{1+3} \cdot \text{det}\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = 1 \cdot (1 \cdot 1 - 0 \cdot 1) = 1 \] Continuing this process for all elements, we find the cofactor matrix: \[ \text{Cofactor}(A) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] ### Step 4: Calculate the Adjoint of \( A \) The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}^T = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] ### Step 5: Calculate the Inverse of \( A \) Using the formula for the inverse: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] Thus, \[ A^{-1} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \] ### Step 6: Calculate \( A^2 \) Now we compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] Calculating the product: - First row: \( (0, 1, 1) \cdot (0, 1, 1) = 2 \), \( (0, 1, 1) \cdot (1, 0, 1) = 1 \), \( (0, 1, 1) \cdot (1, 1, 0) = 1 \) - Second row: \( (1, 0, 1) \cdot (0, 1, 1) = 1 \), \( (1, 0, 1) \cdot (1, 0, 1) = 2 \), \( (1, 0, 1) \cdot (1, 1, 0) = 1 \) - Third row: \( (1, 1, 0) \cdot (0, 1, 1) = 1 \), \( (1, 1, 0) \cdot (1, 0, 1) = 1 \), \( (1, 1, 0) \cdot (1, 1, 0) = 2 \) Thus, \[ A^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \] ### Step 7: Calculate \( A^2 - 3I \) Where \( I \) is the identity matrix: \[ 3I = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} \] Now, \[ A^2 - 3I = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \] ### Step 8: Calculate \( \frac{A^2 - 3I}{2} \) Finally, \[ \frac{A^2 - 3I}{2} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \] ### Conclusion Thus, we have shown that: \[ A^{-1} = \frac{A^2 - 3I}{2} \]

To find the inverse of the matrix \( A \) and show that \( A^{-1} = \frac{A^2 - 3I}{2} \), we will follow these steps: ### Step 1: Define the Matrix \( A \) Given: \[ A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|6 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[[1,-1, 1],[ 2,-1, 0],[ 1, 0, 0]] , show that A^(-1)=A^2 .

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A=[-1 2 0-1 1 1 0 1 0] , show that A^2=A^(-1) .

If a matrix A=((3,2,0),(1,4,0),(0,0,5)) show that A^2-7A+10I_(3) = 0 and hence find A^(-1)

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

If A=[(1,1),(0,1)] , show that A^2=[(1, 2),( 0, 1)] and A^3=[(1 ,3 ),(0 ,1)] .