Home
Class 12
MATHS
If x,y,zepsilonR then the value of |((2x...

If `x,y,zepsilonR` then the value of `|((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given in the question, we can follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ D = \begin{vmatrix} (2^x + 2^{-x})^2 & (2^x - 2^{-x})^2 & 1 \\ (3^x + 3^{-x})^2 & (3^x - 3^{-x})^2 & 1 \\ (4^x + 4^{-x})^2 & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 2: Transform the first two columns Notice that the first two columns have a specific structure. We can transform the first column (C1) by subtracting the second column (C2) from it: \[ C1 \rightarrow C1 - C2 \] This gives us: \[ D = \begin{vmatrix} (2^x + 2^{-x})^2 - (2^x - 2^{-x})^2 & (2^x - 2^{-x})^2 & 1 \\ (3^x + 3^{-x})^2 - (3^x - 3^{-x})^2 & (3^x - 3^{-x})^2 & 1 \\ (4^x + 4^{-x})^2 - (4^x - 4^{-x})^2 & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 3: Simplify the first column Using the algebraic identity \( (a+b)^2 - (a-b)^2 = 4ab \), we can simplify each entry in the first column: - For \( a = 2^x \) and \( b = 2^{-x} \): \[ (2^x + 2^{-x})^2 - (2^x - 2^{-x})^2 = 4(2^x)(2^{-x}) = 4 \] - For \( a = 3^x \) and \( b = 3^{-x} \): \[ (3^x + 3^{-x})^2 - (3^x - 3^{-x})^2 = 4(3^x)(3^{-x}) = 4 \] - For \( a = 4^x \) and \( b = 4^{-x} \): \[ (4^x + 4^{-x})^2 - (4^x - 4^{-x})^2 = 4(4^x)(4^{-x}) = 4 \] Thus, the determinant simplifies to: \[ D = \begin{vmatrix} 4 & (2^x - 2^{-x})^2 & 1 \\ 4 & (3^x - 3^{-x})^2 & 1 \\ 4 & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 4: Factor out the common term We can factor out 4 from the first column: \[ D = 4 \begin{vmatrix} 1 & (2^x - 2^{-x})^2 & 1 \\ 1 & (3^x - 3^{-x})^2 & 1 \\ 1 & (4^x - 4^{-x})^2 & 1 \end{vmatrix} \] ### Step 5: Identify identical rows Now, observe that the first column consists of all 1's. If we subtract the first column from the second column, we will have: \[ D = 4 \begin{vmatrix} 1 & (2^x - 2^{-x})^2 - 1 & 1 \\ 1 & (3^x - 3^{-x})^2 - 1 & 1 \\ 1 & (4^x - 4^{-x})^2 - 1 & 1 \end{vmatrix} \] ### Step 6: Conclude the determinant value Since the first and third columns are now identical, the determinant is zero: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]

To solve the determinant given in the question, we can follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ D = \begin{vmatrix} (2^x + 2^{-x})^2 & (2^x - 2^{-x})^2 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

Without expanding, show that the value of each of the determinants is zero: |[(2^x+2^(-x))^2, (2^x-2^(-1))^2, 1] , [(3^x+3^(-1))^2, (3^x-3^(-x))^2, 1] , [(4^x+4^(-x))^2, (4^x-4^(-x))^2, 1]|

If x=2+sqrt(3) , then find the value of x^(4)-4x^(3)+x^(2)+x+1 .

Evaluate lim_(xtooo) ((x^(2)+x-1)/(3x^(2)+2x+4))^((3x^(2)+x)/(x-2))

If x = 3, what is the sum of 2x(2x+1), (2x+2),(2x+3), and (2x+4) ?

If x=(sqrt(3)+1)/2, find the value of 4x^3+2x^2-8x+7.

If (x^(4))/((x-1)(x+2))=(1)/(3(x-1))-(16)/(3(x+2))+x^(2)-x+k then k=

int((x^(- 6)-64)/(4+2x^(- 1)+x^(- 2))*(x^2)/(4-4x^(- 1)+x^(- 2))-(4x^2(2x+1))/(1-2x))dx

Simplify: 2x^2(x^3-x)-3x(x^4+2x)-2(x^4-3x^2)

Solve the equations: 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1) .

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then