Home
Class 12
MATHS
If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(2...

If `f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+x)^(34)),((1+x)^(41),(1+x)^(43),(1+x)^(47))|`
`=A+Bx+Cx^(2)+……….` then `A` is equal to………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by the function \( f(x) \) and find the value of \( A \) in the expression \( f(x) = A + Bx + Cx^2 + \ldots \). The determinant is defined as follows: \[ f(x) = \begin{vmatrix} (1+x)^{17} & (a+x)^{19} & (1+x)^{23} \\ (a+x)^{23} & (a+x)^{29} & (1+x)^{34} \\ (1+x)^{41} & (1+x)^{43} & (1+x)^{47} \end{vmatrix} \] ### Step 1: Substitute \( x = 0 \) To find \( A \), we can evaluate \( f(0) \): \[ f(0) = \begin{vmatrix} (1+0)^{17} & (a+0)^{19} & (1+0)^{23} \\ (a+0)^{23} & (a+0)^{29} & (1+0)^{34} \\ (1+0)^{41} & (1+0)^{43} & (1+0)^{47} \end{vmatrix} \] This simplifies to: \[ f(0) = \begin{vmatrix} 1 & a^{19} & 1 \\ a^{23} & a^{29} & 1 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 2: Calculate the Determinant Now, we compute the determinant: Using the properties of determinants, we can simplify this determinant. Notice that the first and third columns are identical in terms of their first and last entries, which will lead to a simplification. Calculating the determinant, we can perform row operations or use the determinant formula directly. However, we can also see that the first and third rows are identical, which means: \[ f(0) = 0 \] ### Step 3: Conclusion Since \( f(0) = A \), we have: \[ A = 0 \] Thus, the value of \( A \) is: \[ \boxed{0} \]

To solve the problem, we need to evaluate the determinant given by the function \( f(x) \) and find the value of \( A \) in the expression \( f(x) = A + Bx + Cx^2 + \ldots \). The determinant is defined as follows: \[ f(x) = \begin{vmatrix} (1+x)^{17} & (a+x)^{19} & (1+x)^{23} \\ (a+x)^{23} & (a+x)^{29} & (1+x)^{34} \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^(100) then f'(1) is equal to

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1,sinx^2))|=A+Bx+Cx^2+.... then B is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

Find (x)/(1.2)+(x^(2))/(2.3)+(x^(3))/(3.4)+....=

If f((1)/(x)) +x^(2)f(x) =0, x gt0 and I= int_(1//x)^(x) f(t)dt, (1)/(2) le x le 2x , then I is equal to