Home
Class 12
MATHS
Check the continuity of f(x)={{:((1-c...

Check the continuity of ` f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):}` at `x = 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To check the continuity of the function \[ f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0 \\ 5 & \text{if } x = 0 \end{cases} \] at \( x = 0 \), we need to verify the following conditions: 1. The left-hand limit as \( x \) approaches 0. 2. The right-hand limit as \( x \) approaches 0. 3. The value of the function at \( x = 0 \). A function is continuous at a point if the left-hand limit, right-hand limit, and the function value at that point are all equal. ### Step 1: Calculate the Left-Hand Limit The left-hand limit as \( x \) approaches 0 is given by: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - \cos(2x)}{x^2} \] To evaluate this limit, we can substitute \( x \) with \( 0 - h \) (where \( h \to 0^+ \)): \[ \lim_{h \to 0} \frac{1 - \cos(2(0 - h))}{(0 - h)^2} = \lim_{h \to 0} \frac{1 - \cos(-2h)}{h^2} \] Since \( \cos(-\theta) = \cos(\theta) \): \[ = \lim_{h \to 0} \frac{1 - \cos(2h)}{h^2} \] Using the trigonometric identity \( 1 - \cos(2h) = 2 \sin^2(h) \): \[ = \lim_{h \to 0} \frac{2 \sin^2(h)}{h^2} = 2 \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)^2 \] Using the standard limit \( \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \): \[ = 2 \cdot 1^2 = 2 \] Thus, the left-hand limit is: \[ \lim_{x \to 0^-} f(x) = 2 \] ### Step 2: Calculate the Right-Hand Limit The right-hand limit as \( x \) approaches 0 is given by: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 - \cos(2x)}{x^2} \] Similarly, we substitute \( x \) with \( 0 + h \) (where \( h \to 0^+ \)): \[ = \lim_{h \to 0} \frac{1 - \cos(2h)}{h^2} \] Using the same trigonometric identity as before: \[ = \lim_{h \to 0} \frac{2 \sin^2(h)}{h^2} = 2 \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)^2 \] Again, using the standard limit \( \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \): \[ = 2 \cdot 1^2 = 2 \] Thus, the right-hand limit is: \[ \lim_{x \to 0^+} f(x) = 2 \] ### Step 3: Value of the Function at \( x = 0 \) Now, we check the value of the function at \( x = 0 \): \[ f(0) = 5 \] ### Conclusion Now we compare the limits and the function value: - Left-hand limit: \( 2 \) - Right-hand limit: \( 2 \) - Function value at \( x = 0 \): \( 5 \) Since the left-hand limit and right-hand limit are equal but not equal to the function value at \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = 2 \neq f(0) = 5 \] Thus, the function \( f(x) \) is **not continuous** at \( x = 0 \).

To check the continuity of the function \[ f(x) = \begin{cases} \frac{1 - \cos(2x)}{x^2} & \text{if } x \neq 0 \\ 5 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

Check the continuity of f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):} at x = 2 .

Check the continuity of f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4 .

Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", " x= 0):}, at x=0.

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1", " x= 0):},

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .