Home
Class 12
MATHS
Check the continuity of f(x) = {{:((2x^(...

Check the continuity of `f(x) = {{:((2x^(2)-3x-2)/(x-2), if x ne 2), (5, if x = 2):}` at `x = 2`.

Text Solution

AI Generated Solution

The correct Answer is:
To check the continuity of the function \( f(x) \) at \( x = 2 \), we need to verify three conditions: 1. The left-hand limit as \( x \) approaches 2. 2. The right-hand limit as \( x \) approaches 2. 3. The value of the function at \( x = 2 \). The function is defined as: \[ f(x) = \begin{cases} \frac{2x^2 - 3x - 2}{x - 2} & \text{if } x \neq 2 \\ 5 & \text{if } x = 2 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit We need to find: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{2x^2 - 3x - 2}{x - 2} \] Substituting \( x = 2 - h \) (where \( h \to 0^+ \)): \[ \lim_{h \to 0} \frac{2(2 - h)^2 - 3(2 - h) - 2}{(2 - h) - 2} \] Expanding the numerator: \[ = \lim_{h \to 0} \frac{2(4 - 4h + h^2) - 6 + 3h - 2}{-h} \] \[ = \lim_{h \to 0} \frac{8 - 8h + 2h^2 - 6 + 3h - 2}{-h} \] \[ = \lim_{h \to 0} \frac{2h^2 - 5h}{-h} \] \[ = \lim_{h \to 0} - (2h - 5) = 5 \] ### Step 2: Calculate the Right-Hand Limit Now we find: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{2x^2 - 3x - 2}{x - 2} \] Substituting \( x = 2 + h \) (where \( h \to 0^+ \)): \[ \lim_{h \to 0} \frac{2(2 + h)^2 - 3(2 + h) - 2}{(2 + h) - 2} \] Expanding the numerator: \[ = \lim_{h \to 0} \frac{2(4 + 4h + h^2) - 6 - 3h - 2}{h} \] \[ = \lim_{h \to 0} \frac{8 + 8h + 2h^2 - 6 - 3h - 2}{h} \] \[ = \lim_{h \to 0} \frac{2h^2 + 5h}{h} \] \[ = \lim_{h \to 0} (2h + 5) = 5 \] ### Step 3: Value of the Function at \( x = 2 \) From the definition of the function: \[ f(2) = 5 \] ### Conclusion Since: \[ \lim_{x \to 2^-} f(x) = 5, \quad \lim_{x \to 2^+} f(x) = 5, \quad \text{and} \quad f(2) = 5 \] All three values are equal, thus \( f(x) \) is continuous at \( x = 2 \). ### Final Answer The function \( f(x) \) is continuous at \( x = 2 \). ---

To check the continuity of the function \( f(x) \) at \( x = 2 \), we need to verify three conditions: 1. The left-hand limit as \( x \) approaches 2. 2. The right-hand limit as \( x \) approaches 2. 3. The value of the function at \( x = 2 \). The function is defined as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Check the continuity of f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Check the continuity of f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):} at x = 4 .

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", " x= 0):}, at x=0.

Discuss the continuity of f(x)=sgn(x^2-2x+3)

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

f(x)={{:(3x+5, if x ge 2),(x^(3), if x le 2):} at x = 2

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.