Home
Class 12
MATHS
Check the continuity of f(x)={{:(e^(1//x...

Check the continuity of `f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at ` x = 0

Text Solution

AI Generated Solution

The correct Answer is:
To check the continuity of the function \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] at \( x = 0 \), we need to verify the following conditions: 1. The left-hand limit as \( x \) approaches 0 exists. 2. The right-hand limit as \( x \) approaches 0 exists. 3. Both limits are equal to \( f(0) \). ### Step 1: Calculate the Left-Hand Limit We start by calculating the left-hand limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}. \] As \( x \to 0^- \), \( \frac{1}{x} \to -\infty \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0^-} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} = \lim_{h \to 0^+} \frac{e^{-\frac{1}{h}}}{1 + e^{-\frac{1}{h}}. \] Since \( e^{-\frac{1}{h}} \to 0 \) as \( h \to 0^+ \), we have: \[ \lim_{h \to 0^+} \frac{0}{1 + 0} = 0. \] Thus, \[ \lim_{x \to 0^-} f(x) = 0. \] ### Step 2: Calculate the Right-Hand Limit Next, we calculate the right-hand limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}. \] As \( x \to 0^+ \), \( \frac{1}{x} \to +\infty \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0^+} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} = \lim_{h \to 0^+} \frac{e^{\frac{1}{h}}}{1 + e^{\frac{1}{h}}. \] Since \( e^{\frac{1}{h}} \to +\infty \) as \( h \to 0^+ \), we have: \[ \lim_{h \to 0^+} \frac{+\infty}{1 + \infty} = 1. \] Thus, \[ \lim_{x \to 0^+} f(x) = 1. \] ### Step 3: Evaluate \( f(0) \) Now, we evaluate \( f(0) \): \[ f(0) = 0. \] ### Conclusion Now we compare the limits and the function value: - Left-hand limit: \( \lim_{x \to 0^-} f(x) = 0 \) - Right-hand limit: \( \lim_{x \to 0^+} f(x) = 1 \) - Function value: \( f(0) = 0 \) Since the left-hand limit does not equal the right-hand limit, we conclude that: \[ \text{The function } f(x) \text{ is discontinuous at } x = 0. \]

To check the continuity of the function \[ f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Check the continuity of f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

f(x)={{:((1-cos2x)/(x^(2)),if x ne 0),(5, if x = 0):} at x = 0 .

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

Discuss the conttinuity of f(x) ={{:((x-1)/(e^((1)/(x-1))),x=0),(0,x=0):} at x=1.

f(x) = {{:(x^(2)sin'1/x, if x ne 0),(0, if x = 0):} at x = 0 .

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", " x= 0):},

Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1", " x= 0):},