Home
Class 12
MATHS
Check the continuity of f(x) = {{:(x^(2)...

Check the continuity of f(x) = `{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):}` at `x = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To check the continuity of the function \( f(x) \) at \( x = 1 \), we need to verify three conditions: 1. The left-hand limit as \( x \) approaches 1 exists. 2. The right-hand limit as \( x \) approaches 1 exists. 3. The value of the function at \( x = 1 \) is equal to both the left-hand limit and the right-hand limit. Given: \[ f(x) = \begin{cases} \frac{x^2}{2} & \text{if } 0 \leq x \leq 1 \\ 2x^2 - 3x + \frac{3}{2} & \text{if } 1 < x \leq 2 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit The left-hand limit as \( x \) approaches 1 is given by: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x^2}{2} \] Substituting \( x = 1 \): \[ = \frac{1^2}{2} = \frac{1}{2} \] ### Step 2: Calculate the Right-Hand Limit The right-hand limit as \( x \) approaches 1 is given by: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(2x^2 - 3x + \frac{3}{2}\right) \] Substituting \( x = 1 \): \[ = 2(1^2) - 3(1) + \frac{3}{2} = 2 - 3 + \frac{3}{2} = -1 + \frac{3}{2} = \frac{1}{2} \] ### Step 3: Calculate the Value of the Function at \( x = 1 \) Now, we find the value of the function at \( x = 1 \): \[ f(1) = \frac{1^2}{2} = \frac{1}{2} \] ### Conclusion Now we compare the limits and the function value: - Left-hand limit: \( \frac{1}{2} \) - Right-hand limit: \( \frac{1}{2} \) - Function value at \( x = 1 \): \( \frac{1}{2} \) Since: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) = \frac{1}{2} \] All three conditions for continuity are satisfied. Thus, we conclude that \( f(x) \) is continuous at \( x = 1 \).

To check the continuity of the function \( f(x) \) at \( x = 1 \), we need to verify three conditions: 1. The left-hand limit as \( x \) approaches 1 exists. 2. The right-hand limit as \( x \) approaches 1 exists. 3. The value of the function at \( x = 1 \) is equal to both the left-hand limit and the right-hand limit. Given: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

Discuss the continuity of the function f(x)= {(x , 0 le x lt1/2 ),( 12,x=1/2),( 1-x , 1/2ltxle1):} at the point x=1//2 .

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

The function f(x) ={{:( 5x-4, " for " 0 lt x le 1) ,( 4x^(2) - 3x, " for" 1 lt x lt 2 ),( 3x + 4 , "for" x ge2):}is

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).