Home
Class 12
MATHS
If f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if...

If `f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):}` ,` is 'conti nuous' at x = 2`. then find 'k'.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{2^{(x+2)} - 16}{4^x - 16} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} \] is continuous at \( x = 2 \), we need to ensure that \[ \lim_{x \to 2} f(x) = f(2) = k. \] ### Step 1: Calculate the limit as \( x \) approaches 2 We start by evaluating the limit: \[ \lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{2^{(x+2)} - 16}{4^x - 16}. \] ### Step 2: Simplify the expression First, we can rewrite \( 2^{(x+2)} \) as \( 4 \cdot 2^x \): \[ \lim_{x \to 2} \frac{4 \cdot 2^x - 16}{4^x - 16}. \] ### Step 3: Factor the numerator and denominator Next, we can factor both the numerator and the denominator. - The numerator can be factored as: \[ 4 \cdot 2^x - 16 = 4(2^x - 4). \] - The denominator can be rewritten using \( 4^x = (2^2)^x = 2^{2x} \): \[ 4^x - 16 = 2^{2x} - 16 = (2^x - 4)(2^x + 4). \] ### Step 4: Substitute the factored forms back into the limit Now, substituting back, we have: \[ \lim_{x \to 2} \frac{4(2^x - 4)}{(2^x - 4)(2^x + 4)}. \] ### Step 5: Cancel common factors Since \( 2^x - 4 \) is a common factor in both the numerator and the denominator, we can cancel it (as long as \( x \neq 2 \)): \[ \lim_{x \to 2} \frac{4}{2^x + 4}. \] ### Step 6: Evaluate the limit Now we can directly substitute \( x = 2 \): \[ \lim_{x \to 2} \frac{4}{2^x + 4} = \frac{4}{2^2 + 4} = \frac{4}{4 + 4} = \frac{4}{8} = \frac{1}{2}. \] ### Step 7: Set the limit equal to \( k \) Since we want the function to be continuous at \( x = 2 \), we set: \[ k = \frac{1}{2}. \] ### Final Answer Thus, the value of \( k \) is \[ \boxed{\frac{1}{2}}. \]

To find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{2^{(x+2)} - 16}{4^x - 16} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find the value of k so that the function f(x) = {((2^(x+2) - 16)/(4^(x) - 16),"if",x ne 2),(" k","if",x = 2):} is continuous at x = 2.

If f(x)={(2^(x+2)-16)/(4^x-16) , if x!=2 , k if x=2 is continuous at x=2 , find k

If f(x)={((2^(x+2)-16)/(4^x-16),x!=2),(k, x=2):} is continuous at x=2 , find k .

If f(x)={(2^(x+2)-16)/(4^x-16),if x!=2k ,if f(x) is continuous a t x=2, find k

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if x ne 0),(k, if x = 0):} remains discontinuous at x = 0 , regardings the choice iof k.

Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if x ne 0),(k, if x = 0):} remains discontinuous at x = 0 , regardings the choice iof k.

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):} is continuous at x=-2 , then the value of k is

If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):} , then f(x) is