Home
Class 12
MATHS
f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),i...

`f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):}` at `x = 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} & \text{if } -1 \leq x < 0 \\ \frac{2x + 1}{x - 1} & \text{if } 0 \leq x \leq 1 \end{cases} \] is continuous at \( x = 0 \), we need to ensure that the left-hand limit as \( x \) approaches \( 0 \) from the left equals the value of the function at \( x = 0 \), which in turn equals the right-hand limit as \( x \) approaches \( 0 \) from the right. ### Step 1: Find \( f(0) \) For \( x = 0 \), we use the second case of the piecewise function: \[ f(0) = \frac{2(0) + 1}{0 - 1} = \frac{1}{-1} = -1 \] ### Step 2: Find the left-hand limit as \( x \to 0^- \) We calculate the limit of the first case as \( x \) approaches \( 0 \) from the left: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} \] To simplify this limit, we can multiply the numerator and denominator by the conjugate: \[ \lim_{x \to 0^-} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} \cdot \frac{\sqrt{1+kx} + \sqrt{1-kx}}{\sqrt{1+kx} + \sqrt{1-kx}} = \lim_{x \to 0^-} \frac{(1+kx) - (1-kx)}{x(\sqrt{1+kx} + \sqrt{1-kx})} \] This simplifies to: \[ \lim_{x \to 0^-} \frac{2kx}{x(\sqrt{1+kx} + \sqrt{1-kx})} = \lim_{x \to 0^-} \frac{2k}{\sqrt{1+kx} + \sqrt{1-kx}} \] ### Step 3: Evaluate the limit as \( x \to 0 \) As \( x \) approaches \( 0 \): \[ \sqrt{1+kx} \to \sqrt{1} = 1 \quad \text{and} \quad \sqrt{1-kx} \to \sqrt{1} = 1 \] Thus, we have: \[ \lim_{x \to 0^-} \frac{2k}{\sqrt{1+kx} + \sqrt{1-kx}} = \frac{2k}{1 + 1} = \frac{2k}{2} = k \] ### Step 4: Find the right-hand limit as \( x \to 0^+ \) Now we calculate the limit from the right: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{2x + 1}{x - 1} = \frac{2(0) + 1}{0 - 1} = \frac{1}{-1} = -1 \] ### Step 5: Set the limits equal for continuity For \( f(x) \) to be continuous at \( x = 0 \), we set the left-hand limit equal to \( f(0) \): \[ k = -1 \] ### Conclusion Thus, the value of \( k \) for which \( f(x) \) is continuous at \( x = 0 \) is: \[ \boxed{-1} \]

To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} & \text{if } -1 \leq x < 0 \\ \frac{2x + 1}{x - 1} & \text{if } 0 \leq x \leq 1 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

sin^(-1)(xsqrt(x)),0 le x le 1

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

Let f(x) = {{:(1-x ,"If" 0 le x le 1),(0, "if" 1 lt x le 2),((2-x)^(2),"if"2 lt x le 3):} and function F(x) = int_(0)^(x)f(t) dt . If number of points of discountinuity in [0,3] and non-differentiablity in (0,2) and F(x) are alpha and beta respectively , then (alpha - beta) is equal to .

Show that the function f(x) = {{:(2x+3",",-3 le x lt -2),(x+1",",-2 le x lt 0),(x+2",",0 le x le 1):} is discontinuous at x = 0 and continuous at every point in interval [-3, 1]

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1