Home
Class 12
MATHS
Find all point of discontinuity of the f...

Find all point of discontinuity of the function `f(t)=1/(t^2+t-2),` where `t=1/(x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find all points of discontinuity of the function \( f(t) = \frac{1}{t^2 + t - 2} \) where \( t = \frac{1}{x - 1} \), we will follow these steps: ### Step 1: Substitute \( t \) in the function Given \( t = \frac{1}{x - 1} \), we substitute this into the function: \[ f\left(\frac{1}{x - 1}\right) = \frac{1}{\left(\frac{1}{x - 1}\right)^2 + \left(\frac{1}{x - 1}\right) - 2} \] ### Step 2: Simplify the expression We need to simplify the denominator: \[ \left(\frac{1}{x - 1}\right)^2 = \frac{1}{(x - 1)^2} \] Thus, the denominator becomes: \[ \frac{1}{(x - 1)^2} + \frac{1}{x - 1} - 2 \] To combine these fractions, we take \( (x - 1)^2 \) as the common denominator: \[ \frac{1 + (x - 1) - 2(x - 1)^2}{(x - 1)^2} \] ### Step 3: Expand and simplify the numerator Now we expand the numerator: \[ 1 + (x - 1) - 2(x^2 - 2x + 1) = 1 + x - 1 - 2x^2 + 4x - 2 = -2x^2 + 5x - 2 \] So, we have: \[ f\left(\frac{1}{x - 1}\right) = \frac{1}{\frac{-2x^2 + 5x - 2}{(x - 1)^2}} = \frac{(x - 1)^2}{-2x^2 + 5x - 2} \] ### Step 4: Identify points of discontinuity The function \( f(t) \) will be discontinuous when the denominator is zero: \[ -2x^2 + 5x - 2 = 0 \] ### Step 5: Solve the quadratic equation To solve the quadratic equation, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = -2, b = 5, c = -2 \): \[ x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot (-2) \cdot (-2)}}{2 \cdot (-2)} \] Calculating the discriminant: \[ b^2 - 4ac = 25 - 16 = 9 \] Now substituting back: \[ x = \frac{-5 \pm 3}{-4} \] Calculating the two possible values: 1. \( x = \frac{-5 + 3}{-4} = \frac{-2}{-4} = \frac{1}{2} \) 2. \( x = \frac{-5 - 3}{-4} = \frac{-8}{-4} = 2 \) ### Conclusion The points of discontinuity are: \[ x = \frac{1}{2} \quad \text{and} \quad x = 2 \]

To find all points of discontinuity of the function \( f(t) = \frac{1}{t^2 + t - 2} \) where \( t = \frac{1}{x - 1} \), we will follow these steps: ### Step 1: Substitute \( t \) in the function Given \( t = \frac{1}{x - 1} \), we substitute this into the function: \[ f\left(\frac{1}{x - 1}\right) = \frac{1}{\left(\frac{1}{x - 1}\right)^2 + \left(\frac{1}{x - 1}\right) - 2} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find all point of discountinuity of the function f(t) = (1)/(t^(2)+t-2) , where t = (1)/(x-1) .

Find the points of discontinuity, if any, of the following function: f(x)={(x^4+x^3+2x^2)/(t a n^(-1)x)\ \ \ ,\ \ \ if\ x!=0 ,0\ \ \ ,\ \ \ if\ x=0

Find all points of discontinuity of f, where f is defined by f(x)={{:(x+1, ifxgeq1),(x^2+1, ifx<1):}

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the locus of the point (t^2-t+1,t^2+t+1),t in R .

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

Find the locus of the point (t^2-t+1,t^2+t+1),t in Rdot

Find the interval of increase or decrease of the f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt