Home
Class 12
MATHS
Differentiate cos(tansqrt(x+1))...

Differentiate `cos(tansqrt(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos(\tan(\sqrt{x + 1})) \), we will apply the chain rule repeatedly. Let's go through the steps: ### Step-by-Step Solution: 1. **Identify the outer function and inner functions**: - The outer function is \( \cos(u) \) where \( u = \tan(v) \) and \( v = \sqrt{x + 1} \). 2. **Differentiate the outer function**: - The derivative of \( \cos(u) \) is \( -\sin(u) \). Therefore, we have: \[ \frac{dy}{dx} = -\sin(\tan(\sqrt{x + 1})) \cdot \frac{du}{dx} \] 3. **Differentiate the middle function**: - Now, differentiate \( u = \tan(v) \). The derivative of \( \tan(v) \) is \( \sec^2(v) \). Thus: \[ \frac{du}{dx} = \sec^2(\sqrt{x + 1}) \cdot \frac{dv}{dx} \] 4. **Differentiate the innermost function**: - Now, differentiate \( v = \sqrt{x + 1} \). The derivative of \( \sqrt{x + 1} \) is: \[ \frac{dv}{dx} = \frac{1}{2\sqrt{x + 1}} \] 5. **Combine all parts**: - Substitute \( \frac{dv}{dx} \) back into \( \frac{du}{dx} \): \[ \frac{du}{dx} = \sec^2(\sqrt{x + 1}) \cdot \frac{1}{2\sqrt{x + 1}} \] - Now, substitute \( \frac{du}{dx} \) back into \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\sin(\tan(\sqrt{x + 1})) \cdot \left( \sec^2(\sqrt{x + 1}) \cdot \frac{1}{2\sqrt{x + 1}} \right) \] 6. **Final expression**: - Therefore, the derivative is: \[ \frac{dy}{dx} = -\frac{\sin(\tan(\sqrt{x + 1})) \cdot \sec^2(\sqrt{x + 1})}{2\sqrt{x + 1}} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{\sin(\tan(\sqrt{x + 1})) \cdot \sec^2(\sqrt{x + 1})}{2\sqrt{x + 1}} \]

To differentiate the function \( y = \cos(\tan(\sqrt{x + 1})) \), we will apply the chain rule repeatedly. Let's go through the steps: ### Step-by-Step Solution: 1. **Identify the outer function and inner functions**: - The outer function is \( \cos(u) \) where \( u = \tan(v) \) and \( v = \sqrt{x + 1} \). 2. **Differentiate the outer function**: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiation of cos (sqrt(x)) with respect to x is

Differentiate: e^(cos^(-1)sqrt(1-x^(2))

Differentiate tan^-1sqrt((1-x^2)/(1+x^2)) with respect to cos^-1""x^2

Differentiate cos^(-1){x/(sqrt(x^2+a^2))} with respect to x

Differentiate cos^(-1)(2xsqrt(1-x^2)) -1/(sqrt(2))

Differentiate cos^(-1){2xsqrt(1-x^2)},1/(sqrt(2))

Differentiate sin^(-1)sqrt(1-x^2) with respect to cos^(-1)x , if x∈ [-1,0]

Differentiate sinsqrt(x) + cos^(2)sqrt(x)

Differentiate sinsqrt(x) + cos^(2)sqrt(x)

Differentiate sin^(-1)sqrt(1-x^2) with respect to cos^(-1)x ,