Home
Class 12
MATHS
Differentiate sinx^(2)+sin^(2)x+sin^(2)(...

Differentiate `sinx^(2)+sin^(2)x+sin^(2)(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \), we will apply the chain rule and the product rule where necessary. Let's break it down step by step. ### Step 1: Identify the function We have: \[ y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \] ### Step 2: Differentiate each term We will differentiate each term separately. 1. **Differentiate \( \sin(x^2) \)**: - Using the chain rule: \[ \frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot \frac{d}{dx}(x^2) = \cos(x^2) \cdot 2x \] So, the derivative of \( \sin(x^2) \) is \( 2x \cos(x^2) \). 2. **Differentiate \( \sin^2(x) \)**: - Using the chain rule: \[ \frac{d}{dx}[\sin^2(x)] = 2\sin(x) \cdot \frac{d}{dx}[\sin(x)] = 2\sin(x) \cdot \cos(x) \] This simplifies to \( 2\sin(x)\cos(x) \), which can also be written as \( \sin(2x) \) using the double angle formula. 3. **Differentiate \( \sin^2(x^2) \)**: - Again using the chain rule: \[ \frac{d}{dx}[\sin^2(x^2)] = 2\sin(x^2) \cdot \frac{d}{dx}[\sin(x^2)] = 2\sin(x^2) \cdot \cos(x^2) \cdot \frac{d}{dx}(x^2) = 2\sin(x^2) \cdot \cos(x^2) \cdot 2x \] This simplifies to \( 4x \sin(x^2) \cos(x^2) \). ### Step 3: Combine the derivatives Now, we combine all the derivatives we calculated: \[ \frac{dy}{dx} = 2x \cos(x^2) + 2\sin(x) \cos(x) + 4x \sin(x^2) \cos(x^2) \] ### Step 4: Final expression Thus, the final expression for the derivative is: \[ \frac{dy}{dx} = 2x \cos(x^2) + \sin(2x) + 4x \sin(x^2) \cos(x^2) \] ### Summary The derivative of \( y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \) is: \[ \frac{dy}{dx} = 2x \cos(x^2) + \sin(2x) + 4x \sin(x^2) \cos(x^2) \]

To differentiate the function \( y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \), we will apply the chain rule and the product rule where necessary. Let's break it down step by step. ### Step 1: Identify the function We have: \[ y = \sin(x^2) + \sin^2(x) + \sin^2(x^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x (sinx)^(x) +sin(x^(x))

Differentiate sin^(-1)((2x)/(1+x^2))

Differentiate wrt x : x^(2)*e^(x)*sinx

Differentiate 2x^2 + 4 sinx w.r.t x

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Differentiate sin^(-1){(sinx+cosx)/(sqrt(2))},\ -(3pi)/4

Differentiate x^(sinx - cosx)+(x^2-1)/(x^2+1) with respect to x .

Differentiate: sinx^(2) with respect to x^(3) .

Differentiate (x)/(sinx) w.r.t . sinx .

Differentiate wrt x : (x^(2)sinx- e^(x)"log"x)