Home
Class 12
MATHS
Differentiate sin^(-1)\ (1)/(sqrt(x+1))...

Differentiate `sin^(-1)\ (1)/(sqrt(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \), we will follow these steps: ### Step 1: Identify the function Let \( y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \). ### Step 2: Use the derivative of the inverse sine function The derivative of \( \sin^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{1}{\sqrt{x+1}} \). ### Step 3: Find \( u \) and its derivative First, we need to compute \( u^2 \): \[ u^2 = \left(\frac{1}{\sqrt{x+1}}\right)^2 = \frac{1}{x+1} \] Now, we can find \( 1 - u^2 \): \[ 1 - u^2 = 1 - \frac{1}{x+1} = \frac{x+1 - 1}{x+1} = \frac{x}{x+1} \] Next, we differentiate \( u \): \[ u = (x+1)^{-\frac{1}{2}} \] Using the power rule: \[ \frac{du}{dx} = -\frac{1}{2}(x+1)^{-\frac{3}{2}} \cdot (1) = -\frac{1}{2(x+1)^{\frac{3}{2}}} \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we can substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] Substituting \( 1 - u^2 = \frac{x}{x+1} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{\frac{x}{x+1}}} \cdot \left(-\frac{1}{2(x+1)^{\frac{3}{2}}}\right) \] ### Step 5: Simplify the expression Now simplify \( \frac{1}{\sqrt{\frac{x}{x+1}}} \): \[ \frac{1}{\sqrt{\frac{x}{x+1}}} = \frac{\sqrt{x+1}}{\sqrt{x}} \] Thus, \[ \frac{dy}{dx} = \frac{\sqrt{x+1}}{\sqrt{x}} \cdot \left(-\frac{1}{2(x+1)^{\frac{3}{2}}}\right) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x}\cdot(x+1)} \] ### Final Answer Therefore, the derivative is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x}\cdot(x+1)} \] ---

To differentiate the function \( y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \), we will follow these steps: ### Step 1: Identify the function Let \( y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \). ### Step 2: Use the derivative of the inverse sine function The derivative of \( \sin^{-1}(u) \) with respect to \( x \) is given by: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(1/(sqrt(1+x^2))) with respect to x

Differentiate sin ^(-1) (1/sqrt(1+x^2)) with respect to 'x'

Differentiate sin^(-1){x/(sqrt(x^2+a^2))} with respect to x

Differentiate sin^(-1){(sqrt(1+x)+sqrt(1-x))/2},\ \ 0

Differentiate sin^(-1)[(sqrt(1+x)+sqrt(1-x))/2] with respect to 'x'.

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x if 1/(sqrt(2)) < x < 1

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if 1/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)),\ -1/(sqrt(2))

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)),