Home
Class 12
MATHS
(sinx)^(cosx)...

`(sinx)^(cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differentiation of the function \( y = (\sin x)^{\cos x} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log((\sin x)^{\cos x}) \] ### Step 2: Use the logarithmic property Using the property of logarithms that states \( \log(a^b) = b \log a \), we can rewrite the equation: \[ \log y = \cos x \cdot \log(\sin x) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \). Using implicit differentiation on the left side and the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\cos x \cdot \log(\sin x)) \] ### Step 4: Apply the product rule Let \( u = \cos x \) and \( v = \log(\sin x) \). By the product rule: \[ \frac{d}{dx}(uv) = u'v + uv' \] where \( u' = -\sin x \) and \( v' = \frac{1}{\sin x} \cdot \cos x = \cot x \). Thus, we have: \[ \frac{1}{y} \frac{dy}{dx} = (-\sin x) \log(\sin x) + \cos x \cdot \cot x \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, we can multiply both sides by \( y \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( -\sin x \log(\sin x) + \cos x \cot x \right) \] ### Step 6: Substitute back for \( y \) Since we know \( y = (\sin x)^{\cos x} \), we substitute back: \[ \frac{dy}{dx} = (\sin x)^{\cos x} \left( -\sin x \log(\sin x) + \cos x \cot x \right) \] ### Final Answer Thus, the derivative of \( y = (\sin x)^{\cos x} \) is: \[ \frac{dy}{dx} = (\sin x)^{\cos x} \left( \cos x \cot x - \sin x \log(\sin x) \right) \] ---

To find the differentiation of the function \( y = (\sin x)^{\cos x} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log((\sin x)^{\cos x}) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Solve (sinx)/(1+cosx)+(1+cosx)/(sinx)

Evaluate: intdx/(cosx(sinx+2cosx)

Show that (1-cosx)/sinx = sinx/(1+cosx)

Prove that (cosx)/(1-sinx)=(1+cosx+sinx)/(1+cosx-sinx)

Integrate the functions (2cosx-3sinx)/(6cosx+4sinx)

The general solution of |sinx|=cosx is (When ninz ) given by

The period of the function f(x)=|sinx|-|cosx| , is

If int(2cosx-sinx+lambda)/(cosx+sinx-2)dx=Aln|cosx+sinx-2|+B x+C , then the value of A+B+|lambda| is______

"If " int(2cosx-sinx+lambda)/(cosx+sinx-2)dx=A " In"|cosx+sinx-2|+Bx+C, " then the value of " A+B+|lambda| " is"-.