Home
Class 12
MATHS
Differentiate sin^(m)x*cos^(n)x...

Differentiate `sin^(m)x*cos^(n)x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^m x \cdot \cos^n x \), we will use the product rule of differentiation. The product rule states that if \( y = u \cdot v \), then the derivative \( \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \). ### Step-by-Step Solution: 1. **Identify the functions**: Let \( u = \sin^m x \) and \( v = \cos^n x \). 2. **Differentiate \( u \)**: To differentiate \( u = \sin^m x \), we use the chain rule: \[ \frac{du}{dx} = m \sin^{m-1} x \cdot \cos x \] (Here, we differentiate \( \sin x \) to get \( \cos x \)). 3. **Differentiate \( v \)**: To differentiate \( v = \cos^n x \), we again use the chain rule: \[ \frac{dv}{dx} = n \cos^{n-1} x \cdot (-\sin x) = -n \cos^{n-1} x \cdot \sin x \] (Here, we differentiate \( \cos x \) to get \( -\sin x \)). 4. **Apply the product rule**: Now, we apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = \sin^m x \cdot (-n \cos^{n-1} x \cdot \sin x) + \cos^n x \cdot (m \sin^{m-1} x \cdot \cos x) \] 5. **Simplify the expression**: \[ \frac{dy}{dx} = -n \sin^{m+1} x \cdot \cos^{n-1} x + m \cos^{n} x \cdot \sin^{m-1} x \cdot \cos x \] \[ = -n \sin^{m+1} x \cdot \cos^{n-1} x + m \sin^{m-1} x \cdot \cos^{n+1} x \] 6. **Factor out common terms**: We can factor out \( \sin^{m-1} x \cdot \cos^{n-1} x \): \[ \frac{dy}{dx} = \sin^{m-1} x \cdot \cos^{n-1} x \left( -n \sin^2 x + m \cos^2 x \right) \] ### Final Result: Thus, the derivative of \( y = \sin^m x \cdot \cos^n x \) is: \[ \frac{dy}{dx} = \sin^{m-1} x \cdot \cos^{n-1} x \left( m \cos^2 x - n \sin^2 x \right) \]

To differentiate the function \( y = \sin^m x \cdot \cos^n x \), we will use the product rule of differentiation. The product rule states that if \( y = u \cdot v \), then the derivative \( \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \). ### Step-by-Step Solution: 1. **Identify the functions**: Let \( u = \sin^m x \) and \( v = \cos^n x \). 2. **Differentiate \( u \)**: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin(m\ sin^(-1)x) with respect to x :

Differentiate : sin(ax+b)/cos(cx+d)

Differentiate sin^(-1)(2xsqrt(1-x^2)),

Differentiate sin(cos(x^2)) with respect to x.

Differentiate sin(2\ sin^(-1)x) with respect to x :

Differentiate sin^(-1)sqrt(1-x^2) with respect to cos^(-1)x , if x∈ [-1,0]

Differentiate (sin^(-1)x)^x with respect to x :

Differentiate sin^(-1)sqrt(1-x^2) with respect to cos^(-1)x ,

Differentiate (sin^(-1)x^4)^4 with respect to x :

Differentiate sin^(-1)sqrt(1-x^2) with respect to x