Home
Class 12
MATHS
Differentiate (x+1)^(2)(x+2)^(3)(x+3)^(4...

Differentiate `(x+1)^(2)(x+2)^(3)(x+3)^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( (x+1)^2 (x+2)^3 (x+3)^4 \), we will use the product rule and the chain rule. Here’s a step-by-step solution: ### Step 1: Define the function Let \[ y = (x+1)^2 (x+2)^3 (x+3)^4 \] ### Step 2: Apply the logarithmic differentiation Taking the natural logarithm of both sides: \[ \ln y = \ln((x+1)^2) + \ln((x+2)^3) + \ln((x+3)^4) \] ### Step 3: Use logarithmic properties Using the property of logarithms \(\ln(a^b) = b \ln a\): \[ \ln y = 2 \ln(x+1) + 3 \ln(x+2) + 4 \ln(x+3) \] ### Step 4: Differentiate both sides Now differentiate both sides with respect to \(x\): \[ \frac{1}{y} \frac{dy}{dx} = 2 \cdot \frac{1}{x+1} \cdot \frac{d}{dx}(x+1) + 3 \cdot \frac{1}{x+2} \cdot \frac{d}{dx}(x+2) + 4 \cdot \frac{1}{x+3} \cdot \frac{d}{dx}(x+3) \] Since \(\frac{d}{dx}(x+k) = 1\) for any constant \(k\), we have: \[ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \] ### Step 5: Solve for \(\frac{dy}{dx}\) Multiplying both sides by \(y\): \[ \frac{dy}{dx} = y \left( \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \right) \] Substituting back \(y = (x+1)^2 (x+2)^3 (x+3)^4\): \[ \frac{dy}{dx} = (x+1)^2 (x+2)^3 (x+3)^4 \left( \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \right) \] ### Step 6: Simplify the expression To simplify: \[ \frac{dy}{dx} = (x+1)^2 (x+2)^3 (x+3)^4 \left( \frac{2(x+2)(x+3) + 3(x+1)(x+3) + 4(x+1)(x+2)}{(x+1)(x+2)(x+3)} \right) \] ### Step 7: Combine terms Now combine the terms in the numerator: \[ = (x+1)^2 (x+2)^3 (x+3)^4 \left( \frac{2(x^2 + 5x + 6) + 3(x^2 + 4x + 3) + 4(x^2 + 3x + 2)}{(x+1)(x+2)(x+3)} \right) \] Calculating the coefficients: - \(2(x^2 + 5x + 6) = 2x^2 + 10x + 12\) - \(3(x^2 + 4x + 3) = 3x^2 + 12x + 9\) - \(4(x^2 + 3x + 2) = 4x^2 + 12x + 8\) Combining: \[ (2 + 3 + 4)x^2 + (10 + 12 + 12)x + (12 + 9 + 8) = 9x^2 + 34x + 29 \] ### Final expression Thus, we have: \[ \frac{dy}{dx} = (x+1)^2 (x+2)^3 (x+3)^4 \cdot \frac{9x^2 + 34x + 29}{(x+1)(x+2)(x+3)} \]

To differentiate the expression \( (x+1)^2 (x+2)^3 (x+3)^4 \), we will use the product rule and the chain rule. Here’s a step-by-step solution: ### Step 1: Define the function Let \[ y = (x+1)^2 (x+2)^3 (x+3)^4 \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate: (2^(x))/(x)

Differentiate wrt x : (x+1)(2x-3)

Differentiate sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))) with respect to x

Differentiate sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))) with respect to x

Differentiate sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))) with respect to x

Differentiate f(x) = (x+2)^(2/3) (1-x)^(1/3) with respect to x

Differentiation of (2x-7)^2(3x+5)^3

Differentiate 3\ e^(-3x)log(1+x)

Differentiate x^(x^2-3)+(x-3)^(x^2) with respect to x :

Differentiate (5x^(1//7)+(3)/(x^(3//2))) with respect to 'x'.