Home
Class 12
MATHS
Simplify: cos^-1((sinx+cosx)/(sqrt(2)))...

Simplify: cos^-1((sinx+cosx)/(sqrt(2)))

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the given expression: \[ y = \cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) \] We can rewrite the fraction: \[ y = \cos^{-1}\left(\frac{1}{\sqrt{2}}(\sin x + \cos x)\right) \] ### Step 2: Recognize the values of sine and cosine Recall that: \[ \frac{1}{\sqrt{2}} = \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) \] Thus, we can express \( \frac{1}{\sqrt{2}} \) as: \[ \frac{1}{\sqrt{2}} = \cos\left(\frac{\pi}{4}\right) \text{ and } \sin\left(\frac{\pi}{4}\right) \] ### Step 3: Use angle addition formula Using the angle addition formula for sine: \[ \sin A + \cos A = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] So we can write: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Substituting this back into our expression gives: \[ y = \cos^{-1}\left(\sin\left(x + \frac{\pi}{4}\right)\right) \] ### Step 4: Use the identity for cosine Now, we know that: \[ \cos^{-1}(\sin \theta) = \frac{\pi}{2} - \theta \quad \text{(for } 0 \leq \theta \leq \frac{\pi}{2}\text{)} \] Thus, we can write: \[ y = \frac{\pi}{2} - \left(x + \frac{\pi}{4}\right) \] ### Step 5: Simplify the final expression Now, simplifying this gives: \[ y = \frac{\pi}{2} - x - \frac{\pi}{4} = \frac{\pi}{4} - x \] ### Final Answer Thus, the simplified expression is: \[ \cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) = \frac{\pi}{4} - x \]

To simplify the expression \( \cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the given expression: \[ y = \cos^{-1}\left(\frac{\sin x + \cos x}{\sqrt{2}}\right) \] We can rewrite the fraction: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Simplify: sin^(-1)((sinx+cosx)/(sqrt(2))) where - π/4 < x < π/4

simplify cos^(-1) ((sinx+cosx)/sqrt2) , pi/4 < x < (5pi )/4

Simplify each of the following: sin^(-1)((sinx+cosx)/(sqrt(2))),\ pi/4 < x < (5pi)/4 (ii) cos^(-1)((sinx+cosx)/(sqrt(2))), (5pi)/4 < x < (9pi)/4

The derivative of cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4)ltxlt(pi)/(4) , w.r.t.x is

Simplify each of the following: sin^(-1)((sinx+cosx)/(sqrt(2)))

int(sinx+cosx)/(sqrt(1+sin2x))dx

If y=cos^(-1)((2cosx-3sinx)/(sqrt(13))) , then (dy)/(dx) , is

Simplify: sin^(-1)(5/(13)cosx+(12)/(13)sinx)

Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/(sqrt(2))},-pi/4ltxltpi/ 4

Differentiate cos^(-1){(cosx+sinx)/(sqrt(2))},\ -pi/4