Home
Class 12
MATHS
Differentiate : tan^(-1)(secx+tanx)...

Differentiate : tan^(-1)(secx+tanx)

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}(\sec x + \tan x) \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \tan^{-1}(\sec x + \tan x) \] ### Step 2: Use trigonometric identities Recall the identities: - \( \sec x = \frac{1}{\cos x} \) - \( \tan x = \frac{\sin x}{\cos x} \) Thus, we can rewrite \( \sec x + \tan x \): \[ \sec x + \tan x = \frac{1}{\cos x} + \frac{\sin x}{\cos x} = \frac{1 + \sin x}{\cos x} \] Now, substituting this back into our function: \[ y = \tan^{-1}\left(\frac{1 + \sin x}{\cos x}\right) \] ### Step 3: Differentiate using the chain rule To differentiate \( y \), we apply the chain rule: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1 + \sin x}{\cos x}\right)^2} \cdot \frac{d}{dx}\left(\frac{1 + \sin x}{\cos x}\right) \] ### Step 4: Differentiate the inner function Now, we differentiate the inner function \( \frac{1 + \sin x}{\cos x} \) using the quotient rule: \[ \frac{d}{dx}\left(\frac{1 + \sin x}{\cos x}\right) = \frac{\cos x \cdot \cos x - (1 + \sin x)(-\sin x)}{\cos^2 x} \] This simplifies to: \[ \frac{\cos^2 x + (1 + \sin x)\sin x}{\cos^2 x} = \frac{\cos^2 x + \sin x + \sin^2 x}{\cos^2 x} = \frac{1 + \sin x}{\cos^2 x} \] ### Step 5: Substitute back into the derivative Substituting this back into our derivative: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1 + \sin x}{\cos x}\right)^2} \cdot \frac{1 + \sin x}{\cos^2 x} \] ### Step 6: Simplify the expression Now, we need to simplify \( 1 + \left(\frac{1 + \sin x}{\cos x}\right)^2 \): \[ 1 + \left(\frac{1 + \sin x}{\cos x}\right)^2 = 1 + \frac{(1 + \sin x)^2}{\cos^2 x} = \frac{\cos^2 x + (1 + \sin x)^2}{\cos^2 x} \] Expanding \( (1 + \sin x)^2 \): \[ (1 + \sin x)^2 = 1 + 2\sin x + \sin^2 x \] Thus: \[ 1 + \left(\frac{1 + \sin x}{\cos x}\right)^2 = \frac{\cos^2 x + 1 + 2\sin x + \sin^2 x}{\cos^2 x} = \frac{2 + 2\sin x}{\cos^2 x} = \frac{2(1 + \sin x)}{\cos^2 x} \] ### Final expression for the derivative Substituting this back into the derivative: \[ \frac{dy}{dx} = \frac{1 + \sin x}{\cos^2 x} \cdot \frac{\cos^2 x}{2(1 + \sin x)} = \frac{1}{2} \] Thus, the final answer is: \[ \frac{dy}{dx} = \frac{1}{2} \]

To differentiate the function \( y = \tan^{-1}(\sec x + \tan x) \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ y = \tan^{-1}(\sec x + \tan x) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)(tanx),\ \ x in [0,\ pi]-{pi/2}

Differentiate tan^(-1)((1+cosx)/sinx) with respect to x

Differentiate tan^(-1){(cosx+sinx)/(cosx-sinx)} with respect to x

Differentiate tan^(-1)((cosx)/(1+sinx)) with respect to sec^(-1)xdot

Differentiate tan^(-1){(cosx)/(1+sinx)},\ 0 le x le pi

Differentiate (tan x-(1)/(3secx)) with respect to 'x'.

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^(-1){ (sinx) / (1+cosx) } with respect to x

Differentiate tan^(-1)((a+x)/(1-a x)) with respect to x

Differentiate tan^(-1)sqrt (a-x)/sqrt(a+x), -a < x < a