Home
Class 12
MATHS
Differentiate the following function w...

Differentiate the following function with respect to `x` : `tan^(-1)((a+x)/(1-a x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{a+x}{1-ax}\right) \) with respect to \( x \), we can follow these steps: ### Step 1: Identify the function Let \[ y = \tan^{-1}\left(\frac{a+x}{1-ax}\right) \] ### Step 2: Use the formula for the derivative of \( \tan^{-1}(u) \) The derivative of \( \tan^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{a+x}{1-ax} \). ### Step 3: Differentiate \( u \) Now, we need to find \( \frac{du}{dx} \). We can use the quotient rule for differentiation: \[ u = \frac{a+x}{1-ax} \] Let \( f(x) = a+x \) and \( g(x) = 1-ax \). Then, \[ \frac{du}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] Calculating \( f'(x) \) and \( g'(x) \): - \( f'(x) = 1 \) - \( g'(x) = -a \) Now substituting these into the quotient rule: \[ \frac{du}{dx} = \frac{(1)(1-ax) - (a+x)(-a)}{(1-ax)^2} \] Simplifying the numerator: \[ = \frac{1 - ax + a(a+x)}{(1-ax)^2} = \frac{1 - ax + a^2 + ax}{(1-ax)^2} = \frac{1 + a^2}{(1-ax)^2} \] ### Step 4: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now substituting back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{a+x}{1-ax}\right)^2} \cdot \frac{1 + a^2}{(1-ax)^2} \] ### Step 5: Simplify \( 1 + u^2 \) Now, we need to simplify \( 1 + u^2 \): \[ u^2 = \left(\frac{a+x}{1-ax}\right)^2 = \frac{(a+x)^2}{(1-ax)^2} \] Thus, \[ 1 + u^2 = 1 + \frac{(a+x)^2}{(1-ax)^2} = \frac{(1-ax)^2 + (a+x)^2}{(1-ax)^2} \] Calculating the numerator: \[ (1-ax)^2 + (a+x)^2 = (1 - 2ax + a^2x^2) + (a^2 + 2ax + x^2) = 1 + a^2 + (a^2 + 1)x^2 \] ### Step 6: Final expression for \( \frac{dy}{dx} \) Putting it all together: \[ \frac{dy}{dx} = \frac{(1 + a^2)}{(1 + a^2 + (a^2 + 1)x^2)} \cdot \frac{1 + a^2}{(1-ax)^2} \] ### Final Answer Thus, the derivative of the function is: \[ \frac{dy}{dx} = \frac{(1 + a^2)^2}{(1 + a^2 + (a^2 + 1)x^2)(1-ax)^2} \]

To differentiate the function \( y = \tan^{-1}\left(\frac{a+x}{1-ax}\right) \) with respect to \( x \), we can follow these steps: ### Step 1: Identify the function Let \[ y = \tan^{-1}\left(\frac{a+x}{1-ax}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following function with respect to x : x^x

Differentiate the following functions with respect to x : tan^(-1)((a+x)/(1-a x))

Differentiate the following functions with respect to x : tan^(-1)((a+x)/(1-a x))

Differentiate the following functions with respect to x tan^(-1)((a+x)/(1-a x))

Differentiate the following function with respect to x:x^(1/x)

Differentiate the following functions with respect to tan5x^0

Differentiate the following function tan^2x

Differentiate the following function with respect of x : x^ntanx

Differentiate the following functions with respect to x : tan^(-1)((a+x)/(1-a x)) (ii) tan^(-1)((acosx-bsinx)/(bcosx+asinx)) , -pi/2 -1

Differentiate the following functions with respect to x : tan^(-1)((a+x)/(1-a x)) (ii) tan^(-1)((acosx-bsinx)/(bcosx+asinx)),\ -pi/2 -1