Home
Class 12
MATHS
Differentiate tan^(-1) ((3a^2x-x^3)/(a^3...

Differentiate `tan^(-1) ((3a^2x-x^3)/(a^3-3a x^2)),

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1} \left( \frac{3a^2x - x^3}{a^3 - 3ax^2} \right) \), we will follow these steps: ### Step 1: Rewrite the Function We start by rewriting the function \( y \) in a more manageable form. We can divide both the numerator and denominator by \( a^3 \): \[ y = \tan^{-1} \left( \frac{3a^2x - x^3}{a^3 - 3ax^2} \right) = \tan^{-1} \left( \frac{3 \frac{x}{a} - \left( \frac{x}{a} \right)^3}{1 - 3 \left( \frac{x}{a} \right)^2} \right) \] Let \( u = \frac{x}{a} \), then: \[ y = \tan^{-1} \left( \frac{3u - u^3}{1 - 3u^2} \right) \] ### Step 2: Use the Formula for \( \tan(3\theta) \) We recognize that the expression \( \frac{3u - u^3}{1 - 3u^2} \) is the formula for \( \tan(3\theta) \) where \( \theta = \tan^{-1}(u) \): \[ y = \tan^{-1}(\tan(3\theta)) = 3\theta \] ### Step 3: Substitute Back for \( \theta \) Since \( \theta = \tan^{-1}\left(\frac{x}{a}\right) \), we can substitute back: \[ y = 3 \tan^{-1}\left(\frac{x}{a}\right) \] ### Step 4: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 3 \cdot \frac{d}{dx} \left( \tan^{-1}\left(\frac{x}{a}\right) \right) \] Using the derivative formula for \( \tan^{-1}(x) \): \[ \frac{d}{dx} \left( \tan^{-1}(x) \right) = \frac{1}{1 + x^2} \] We apply the chain rule: \[ \frac{d}{dx} \left( \tan^{-1}\left(\frac{x}{a}\right) \right) = \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \frac{d}{dx}\left(\frac{x}{a}\right) = \frac{1}{1 + \frac{x^2}{a^2}} \cdot \frac{1}{a} \] ### Step 5: Simplify the Derivative Substituting this back into our derivative: \[ \frac{dy}{dx} = 3 \cdot \frac{1}{1 + \frac{x^2}{a^2}} \cdot \frac{1}{a} = \frac{3}{a} \cdot \frac{1}{\frac{a^2 + x^2}{a^2}} = \frac{3}{a} \cdot \frac{a^2}{a^2 + x^2} \] Thus, we have: \[ \frac{dy}{dx} = \frac{3a}{a^2 + x^2} \] ### Final Answer The derivative of \( y = \tan^{-1} \left( \frac{3a^2x - x^3}{a^3 - 3ax^2} \right) \) is: \[ \frac{dy}{dx} = \frac{3a}{a^2 + x^2} \]

To differentiate the function \( y = \tan^{-1} \left( \frac{3a^2x - x^3}{a^3 - 3ax^2} \right) \), we will follow these steps: ### Step 1: Rewrite the Function We start by rewriting the function \( y \) in a more manageable form. We can divide both the numerator and denominator by \( a^3 \): \[ y = \tan^{-1} \left( \frac{3a^2x - x^3}{a^3 - 3ax^2} \right) = \tan^{-1} \left( \frac{3 \frac{x}{a} - \left( \frac{x}{a} \right)^3}{1 - 3 \left( \frac{x}{a} \right)^2} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if x >1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

If -1/(sqrt(3)) < x < 1/(sqrt(3)) , differentiate tan^(-1)((3x-x^3)/(1-3x^2)) with respect to tan^(-1)((2x)/(1-x^2)) .

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

Differentiate the following functions with respect to x : tan^(-1)((3a^2x-x^3)/(a^3-3a x^2))

Differentiate the following functions with respect to x : tan^(-1)((3a^2x-x^3)/(a^3-3a x^2))

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x , if x in (-1,\ 1)

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x , if x in (-oo,\ -1)