Home
Class 12
MATHS
y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sq...

`y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) `

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the given expression \( y = \tan^{-1} \left( \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right) \) with respect to \( x \), we will follow these steps: ### Step 1: Substitute \( x^2 = \cos(2\theta) \) We start by substituting \( x^2 = \cos(2\theta) \). This is useful because it allows us to simplify the square roots in the expression. ### Step 2: Rewrite the expression Using the identity \( \cos(2\theta) = 2\cos^2(\theta) - 1 \) and \( 1 - \cos(2\theta) = 2\sin^2(\theta) \), we can rewrite the expression inside the arctangent: \[ y = \tan^{-1} \left( \frac{1 + \cos(2\theta) + \sqrt{1 - \cos(2\theta)}}{1 + \cos(2\theta) - \sqrt{1 - \cos(2\theta)}} \right) \] ### Step 3: Simplify the expression After substituting and simplifying, we get: \[ y = \tan^{-1} \left( \frac{2\cos^2(\theta) + \sqrt{2\sin^2(\theta)}}{2\cos^2(\theta) - \sqrt{2\sin^2(\theta)}} \right) \] This can be further simplified to: \[ y = \tan^{-1} \left( \frac{\sqrt{2}\cos(\theta) + \sqrt{2}\sin(\theta)}{\sqrt{2}\cos(\theta) - \sqrt{2}\sin(\theta)} \right) \] ### Step 4: Use the tangent addition formula Using the tangent addition formula \( \tan\left(\frac{\pi}{4} + \theta\right) = \frac{\tan(\frac{\pi}{4}) + \tan(\theta)}{1 - \tan(\frac{\pi}{4})\tan(\theta)} \), we can express: \[ y = \tan^{-1}(\tan(\frac{\pi}{4} + \theta)) \] Thus, \[ y = \frac{\pi}{4} + \theta \] ### Step 5: Relate \( \theta \) back to \( x \) Since we have \( \theta = \frac{1}{2} \cos^{-1}(x^2) \), we can express \( y \) as: \[ y = \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x^2) \] ### Step 6: Differentiate with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 + \frac{1}{2} \cdot \frac{d}{dx} \left( \cos^{-1}(x^2) \right) \] Using the derivative of \( \cos^{-1}(u) \): \[ \frac{d}{dx} \left( \cos^{-1}(u) \right) = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] where \( u = x^2 \) and \( \frac{du}{dx} = 2x \). Thus, \[ \frac{dy}{dx} = \frac{1}{2} \cdot \left( -\frac{1}{\sqrt{1 - (x^2)^2}} \cdot 2x \right) = -\frac{x}{\sqrt{1 - x^4}} \] ### Final Answer The derivative is: \[ \frac{dy}{dx} = -\frac{x}{\sqrt{1 - x^4}} \]

To differentiate the given expression \( y = \tan^{-1} \left( \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right) \) with respect to \( x \), we will follow these steps: ### Step 1: Substitute \( x^2 = \cos(2\theta) \) We start by substituting \( x^2 = \cos(2\theta) \). This is useful because it allows us to simplify the square roots in the expression. ### Step 2: Rewrite the expression Using the identity \( \cos(2\theta) = 2\cos^2(\theta) - 1 \) and \( 1 - \cos(2\theta) = 2\sin^2(\theta) \), we can rewrite the expression inside the arctangent: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

The value of tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=theta, |x|<1/2,x!=0 , is equal to:

Differentiate tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))} with respect to cos^(-1)x^2

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1