Home
Class 12
MATHS
If x=a(t+1/t) and y=a(t-1/t) , prove tha...

If `x=a(t+1/t)` and `y=a(t-1/t)` , prove that `(dy)/(dx)=x/y`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = \frac{x}{y}\) given the equations \(x = a\left(t + \frac{1}{t}\right)\) and \(y = a\left(t - \frac{1}{t}\right)\), we can follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) Given: \[ x = a\left(t + \frac{1}{t}\right) \] Differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = a\left(1 - \frac{1}{t^2}\right) \] Now for \(y\): \[ y = a\left(t - \frac{1}{t}\right) \] Differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = a\left(1 + \frac{1}{t^2}\right) \] ### Step 2: Use the chain rule to find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{a\left(1 + \frac{1}{t^2}\right)}{a\left(1 - \frac{1}{t^2}\right)} \] The \(a\) cancels out: \[ \frac{dy}{dx} = \frac{1 + \frac{1}{t^2}}{1 - \frac{1}{t^2}} \] ### Step 3: Simplify the expression To simplify, multiply the numerator and denominator by \(t^2\): \[ \frac{dy}{dx} = \frac{t^2 + 1}{t^2 - 1} \] ### Step 4: Express \(x\) and \(y\) in terms of \(t\) Recall: \[ x = a\left(t + \frac{1}{t}\right) \quad \text{and} \quad y = a\left(t - \frac{1}{t}\right) \] We can express \(t + \frac{1}{t}\) and \(t - \frac{1}{t}\) in terms of \(x\) and \(y\): \[ t + \frac{1}{t} = \frac{x}{a} \quad \text{and} \quad t - \frac{1}{t} = \frac{y}{a} \] ### Step 5: Find \(x/y\) Now, we need to find \(\frac{x}{y}\): \[ \frac{x}{y} = \frac{a\left(t + \frac{1}{t}\right)}{a\left(t - \frac{1}{t}\right)} = \frac{t + \frac{1}{t}}{t - \frac{1}{t}} = \frac{t^2 + 1}{t^2 - 1} \] ### Step 6: Conclude the proof Since we have: \[ \frac{dy}{dx} = \frac{t^2 + 1}{t^2 - 1} \quad \text{and} \quad \frac{x}{y} = \frac{t^2 + 1}{t^2 - 1} \] We conclude that: \[ \frac{dy}{dx} = \frac{x}{y} \] Thus, we have proved that \(\frac{dy}{dx} = \frac{x}{y}\).

To prove that \(\frac{dy}{dx} = \frac{x}{y}\) given the equations \(x = a\left(t + \frac{1}{t}\right)\) and \(y = a\left(t - \frac{1}{t}\right)\), we can follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) Given: \[ x = a\left(t + \frac{1}{t}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))