Home
Class 12
MATHS
Find (dy)/(dx) , when x=e^(theta)(theta+...

Find `(dy)/(dx)` , when `x=e^(theta)(theta+1/theta)` and `y=e^(-theta)(theta-1/theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) where \(x = e^{\theta} \left( \theta + \frac{1}{\theta} \right)\) and \(y = e^{-\theta} \left( \theta - \frac{1}{\theta} \right)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = e^{\theta} \left( \theta + \frac{1}{\theta} \right) \] Using the product rule, we differentiate \(x\): \[ \frac{dx}{d\theta} = e^{\theta} \cdot \frac{d}{d\theta}\left(\theta + \frac{1}{\theta}\right) + \left(\theta + \frac{1}{\theta}\right) \cdot \frac{d}{d\theta}(e^{\theta}) \] Calculating the derivatives: \[ \frac{d}{d\theta}\left(\theta + \frac{1}{\theta}\right) = 1 - \frac{1}{\theta^2} \] \[ \frac{d}{d\theta}(e^{\theta}) = e^{\theta} \] Substituting back: \[ \frac{dx}{d\theta} = e^{\theta} \left( 1 - \frac{1}{\theta^2} \right) + \left( \theta + \frac{1}{\theta} \right) e^{\theta} \] \[ = e^{\theta} \left( 1 - \frac{1}{\theta^2} + \theta + \frac{1}{\theta} \right) \] \[ = e^{\theta} \left( \theta + 1 + \frac{1}{\theta} - \frac{1}{\theta^2} \right) \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = e^{-\theta} \left( \theta - \frac{1}{\theta} \right) \] Using the product rule, we differentiate \(y\): \[ \frac{dy}{d\theta} = e^{-\theta} \cdot \frac{d}{d\theta}\left(\theta - \frac{1}{\theta}\right) + \left(\theta - \frac{1}{\theta}\right) \cdot \frac{d}{d\theta}(e^{-\theta}) \] Calculating the derivatives: \[ \frac{d}{d\theta}\left(\theta - \frac{1}{\theta}\right) = 1 + \frac{1}{\theta^2} \] \[ \frac{d}{d\theta}(e^{-\theta}) = -e^{-\theta} \] Substituting back: \[ \frac{dy}{d\theta} = e^{-\theta} \left( 1 + \frac{1}{\theta^2} \right) - \left( \theta - \frac{1}{\theta} \right) e^{-\theta} \] \[ = e^{-\theta} \left( 1 + \frac{1}{\theta^2} - \theta + \frac{1}{\theta} \right) \] \[ = e^{-\theta} \left( 1 - \theta + \frac{1}{\theta} + \frac{1}{\theta^2} \right) \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{e^{-\theta} \left( 1 - \theta + \frac{1}{\theta} + \frac{1}{\theta^2} \right)}{e^{\theta} \left( \theta + 1 + \frac{1}{\theta} - \frac{1}{\theta^2} \right)} \] This simplifies to: \[ \frac{dy}{dx} = e^{-2\theta} \cdot \frac{1 - \theta + \frac{1}{\theta} + \frac{1}{\theta^2}}{\theta + 1 + \frac{1}{\theta} - \frac{1}{\theta^2}} \] ### Final Answer \[ \frac{dy}{dx} = e^{-2\theta} \cdot \frac{1 - \theta + \frac{1}{\theta} + \frac{1}{\theta^2}}{\theta + 1 + \frac{1}{\theta} - \frac{1}{\theta^2}} \]

To find \(\frac{dy}{dx}\) where \(x = e^{\theta} \left( \theta + \frac{1}{\theta} \right)\) and \(y = e^{-\theta} \left( \theta - \frac{1}{\theta} \right)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = e^{\theta} \left( \theta + \frac{1}{\theta} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx),w h e n x=e^(theta)(theta+1/theta)a n dy=e^(-theta)(theta-1/theta)

Find (dy)/(dx), when x=a e^(theta)(sintheta-costheta),y=a e^(theta)(sintheta+costheta)

Find (dy)/(dx) , if x=a(theta+sintheta), y=1(1-costheta) .

Find (dy)/(dx) when x = a sec theta and y = b tan theta

"Find "(dy)/(dx) if x =a(theta- sin theta) and y= a (1- cos theta).

Find (dy)/(dx) , when x=b\ sin^2theta and y=a\ cos^2theta

Find (dy)/(dx) when x = a cos theta and y = b sin theta

Find (dy)/(dx)ifx=a(theta-sintheta) and y=a(1-costheta)dot

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.