Home
Class 12
MATHS
If x=3costheta-cos^3theta y=3sintheta-s...

If `x=3costheta-cos^3theta` `y=3sintheta-sin^3theta` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = 3\cos\theta - \cos^3\theta\) and \(y = 3\sin\theta - \sin^3\theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) We have: \[ x = 3\cos\theta - \cos^3\theta \] To find \(\frac{dx}{d\theta}\), we differentiate \(x\): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(3\cos\theta) - \frac{d}{d\theta}(\cos^3\theta) \] Using the chain rule for the second term: \[ \frac{dx}{d\theta} = 3(-\sin\theta) - 3\cos^2\theta(-\sin\theta) \] This simplifies to: \[ \frac{dx}{d\theta} = -3\sin\theta + 3\sin\theta\cos^2\theta \] Factoring out \(-3\sin\theta\): \[ \frac{dx}{d\theta} = -3\sin\theta(1 - \cos^2\theta) \] Using the identity \(1 - \cos^2\theta = \sin^2\theta\): \[ \frac{dx}{d\theta} = -3\sin\theta\sin^2\theta = -3\sin^3\theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Now we differentiate \(y\): \[ y = 3\sin\theta - \sin^3\theta \] Differentiating \(y\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(3\sin\theta) - \frac{d}{d\theta}(\sin^3\theta) \] Using the chain rule for the second term: \[ \frac{dy}{d\theta} = 3\cos\theta - 3\sin^2\theta\cos\theta \] Factoring out \(3\cos\theta\): \[ \frac{dy}{d\theta} = 3\cos\theta(1 - \sin^2\theta) \] Using the identity \(1 - \sin^2\theta = \cos^2\theta\): \[ \frac{dy}{d\theta} = 3\cos\theta\cos^2\theta = 3\cos^3\theta \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{3\cos^3\theta}{-3\sin^3\theta} \] The \(3\) cancels out: \[ \frac{dy}{dx} = -\frac{\cos^3\theta}{\sin^3\theta} \] This can be rewritten using the cotangent function: \[ \frac{dy}{dx} = -\cot^3\theta \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\cot^3\theta \] ---

To find \(\frac{dy}{dx}\) given the parametric equations \(x = 3\cos\theta - \cos^3\theta\) and \(y = 3\sin\theta - \sin^3\theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) We have: \[ x = 3\cos\theta - \cos^3\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Find the equations of the tangent and the normal to the curve x=3costheta-cos^3theta,\ \ y=3sintheta-sin^3theta

If x=2costheta-cos2theta"and"y=2sintheta-sin2theta" Prove that" (dy)/(dx)=tan((3theta)/2)dot

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

If x = 2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta then prove that : (dy)/(dx)=tan (3 theta)/(2)

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

If x = a( sin theta - theta cos theta) and y = a ( cos theta + theta sin theta) " find " (dy)/(dx) at theta = pi/4